Геногеография фармакогенетических ДНК-маркеров сердечно-сосудистых заболеваний

Создан картографический атлас распространения в Восточной Европе 24 ДНК-маркеров сердечно-сосудистых заболеваний. Атлас основан на данных о фармакогенетическом профиле 61 популяции коренного населения Восточной Европы (3170 индивидов). Проведено сравнение этого атласа с изменчивостью массива 60 разных фармакогенетических ДНК-маркеров. Сравнение проведено и для всей Восточной Европы, и для отдельных ее регионов – Кавказа, Центральной России, Поволжья. Выявленное во всех регионах своеобразие фармакогенетических ДНК-маркеров сердечно-сосудистых заболеваний может быть связано только с действием отбора. Результаты работы могут использоваться в персонифицированной медицине для адаптации фармакогенетических тестов в зависимости от этногеографического происхождения пациента.

Фармакогенетика, исследующая генетические особенности действия лекарств, становится важным инструментом персонифицированной медицины. Для населения России внедрение фармакогенетических тестов сталкивается с фундаментальным ограничением – выраженными генетическими различиями между популяциями. Снять это ограничение может детальное исследование геногеографии фармакогенетически значимых ДНК-маркеров. Ранее в коллективе лаборатории популяционной генетики человека под руководством профессора Е.В.Балановской была изучена геногеография 60 фармакогенетически значимых маркеров в популяциях Северной Евразии. В данной работе их изменчивость впервые сравнивается с геногеографией ДНК-маркеров, связанных с сердечно-сосудистыми заболеваниями (далее – ССЗ), занимающими лидирующее место среди причин смертности.

По данным ВОЗ ежегодно в мире от ССЗ умирает 17,5 миллионов человек с наиболее высокими показателями смертности в Восточной Европе и Центральной Азии. В Европе ССЗ составляют 45% смертей: в странах членах ЕС на ССЗ приходится 3,1 миллион летальных исходов в год, причем ишемическая болезнь сердца и являются причиной смерти 44% мужчин и 38% женщин, а инсульт — 21% мужчин и 26% женщин. В России суммарная смертность от ССЗ – 856,1 тысячи человек, достигает 46,8% от всей смертности.

Поскольку сердечно-сосудистые заболевания проявляются в основном в позднем возрасте, когда смертность от сердечно-сосудистой патологии уже не сказывается на рождении потомства, в работе ставится вопрос о наличии эффекта отбора на гены, связанные с ССЗ.

В исследовании, результаты которого <u>были опубликованы</u> в журнале «Кардиоваскулярная терапия и профилактика», изучена пространственная изменчивость генофондов коренного населения европейской части России по 24 SNP-маркерам, значимым для фармакотерапии ССЗ. При этом геногеография «кардиологических» маркеров сравнивается с изменчивостью панели 60 разных фармакогенетических маркеров.

Изучены 3170 образцов ДНК индивидов из 61 популяции коренных народов Восточной Европы, сформированных в ходе экспедиционных обследований коренного населения по единой технологии и предоставленных АНО «Биобанк Северной Евразии». В выборки включены образцы неродственных между собой индивидов, предки которых на глубину не менее трёх поколений относили себя к данному этносу и популяции. Для генотипирования выбраны 24 SNP-маркера, значимых в фармакокинетике и фармакодинамике лекарственных препаратов для терапии ССЗ: это гены транспортеров лекарственных средств и ксенобиотиков (АВСВ1, АВСG2, SLCO1В1), изоферментов цитохрома P-450 и других ферментов метаболизма (СҮР2С19, СҮР2С9, СҮР2С8, СҮР2D6, СҮР3А4, СҮР3А5, СҮР4F2, CES1, PON1), фармакодинамических мишеней и рецепторов (VKORC1, ADRB1, P2RY12), а также других компонентов метаболических путей.

Для каждого из 24 ССЗ-маркеров создана карта его распространения в коренном населении Восточной Европы.

Генетический ландшафт распространения маркеров СҮР2Д6 и СҮР3А5

Маркеры гена СҮР2D6 связаны с действием бета-блокаторов, а гена СҮР3A5 – с действием антикоагулянтов. Они характеризуются сходным паттерном распространения в населении Восточной Европы. Их генетический ландшафт сглажен. При небольшом диапазоне частот географически близкие популяции отличаются друг от друга, маскируя слабо выраженную клинальную изменчивость с вектором «запад- восток».

rs3892097 (**T**) **гена CYP2D6** (рисунок 1A) обнаруживает максимумы частоты в русских популяциях (в Рязанской и Калужской областях 28%, в Ярославской, Новгородской и Псковской 22%), а также в Приуралье у коми-пермяков (19-21%). На Кавказе также немало максимумов: на Восточном Кавказе 20%, Западном 18%, Центральном 16%. Минимумы (0-5%)

rs1065852 (**A**) гена **CYP2D6** (рисунок 1Б) по своему генетическому ландшафту почти идентичен предыдущему. Можно отметить повышение частоты у белорусов (21%), казаков (30%) и лезгин (33%).

rs28371725 (**T**) **гена CYP2D6** (рисунок 1B) обладает иным паттерном, хотя и крайне слабо выраженном из-за малого диапазона частоты. Максимумы сосредоточены на западе (украинцы 21%) и на юге (17-18% у народов Западного Кавказа, крымских и астраханских татар), а коридор минимумов тянется от карел до Центрального Кавказа и калмыков, захватывая многие русские популяции, мордву, коми-пермяков. Однако в Волго-Уральском регионе частота выше, чем в окружающем поясе низких частот.

rs776746 (**T**) **гена CYP3A5** (рисунок 1 Γ) обнаруживает нечеткий градиент увеличения частоты в обратном направлении: с запада на восток. Низкие частоты (2-4%) характерны для рязанцев, коми-пермяков, украинцев. Повышенные частоты обнаруживаются и на северо-западе (у финнов 21%, у северных русских и манси 15%), и на юге (в Молдавии 20%, у калмыков 15%), и в популяциях Кавказа.

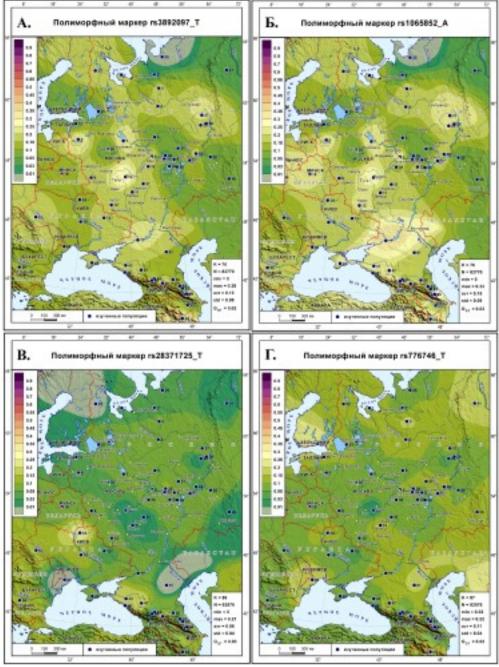


Рисунок 1. Генетический ландшафт распространения маркеров ABCB1, P2RY12 и PON1: A) маркера rs1045642 (G) гена ABCB1, Б) маркера rs4148738 (C) гена ABCB1, B) маркера rs2046934 (G) гена P2RY12, Г) маркера rs662 (C) гена PON1.

Генетический ландшафт распространения маркеров СҮР2С19 и СҮРЗА4

Маркеры гена **CYP2C19** связаны с действием антиагрегантов и ингибиторов протонного насоса, маркеры гена **CYP3A4 –** с эффектом антикоагулянтов.

rs 12248560 (Т) гена CYP2C19 (рисунок 2A) при диапазоне частот 8-38% имеет обширный ареал средних частот (≈23%). Общий паттерн без клинальной изменчивости: высокие частоты сосредоточены в центре с неравномерным снижением к окраинам. Максимумы встречены и на Украине, и на Русском Севере. На севере снижение частоты зафиксировано лишь на западной периферии у северных карел и саамов, а на восточной периферии у манси. В славянских популяциях частота маркера велика – в среднем 29%. У финно-угров при средней частоте 24% размах различий очень велик – от 11 до 35%. На Кавказе максимумы обнаруживаются и на западе у адыгов, и на востоке у азербайджанцев.

rs4244285 (**A**) гена **CYP2C19** (рисунок 2Б) со средней частотой 15% обладает более сглаженным генетическим рельефом. Но у него в центре сосредоточены минимумы, а на периферии разбросаны популяции с повышенными частотами – 26% у калмыков, 24% у степных тюрок и северных карел. В славянских популяциях средняя частота всего 12%. У западных финноугров средняя частота (16%) и размах различий (10-24%) больше, чем у приуральских (12%, 6-15%). Для Кавказа характерны невысокие частоты, лишь у чеченцев и ингушей поднимающиеся до 19%.

rs4986893 (A) гена CYP2C19 (рисунок 2B) крайне редок. Но как области нулевой частоты, так и наличия маркера являются сплошными, а не случайными пятнами – поэтому ландшафт нельзя объяснить ошибками выборками. Регионы, в которых маркер встречен, находятся на периферии: с максимумом на севере у манси (12%), на юге у тюрок степи (8%), на Кавказе — вновь у чеченцев и ингушей (7%).

rs2242480 (T) гена CYP3A4 (рисунок 2Γ) — в ландшафте вновь отсутствует клинальная изменчивость. Область низких частот тянется от запада до востока. Всплески частоты обнаруживаются на периферии: и на севере у финнов (24%) и в Архангельской области (16%); на юге в Молдавии (25%) и у башкир (21%). У славян и западных финно-угров частота в среднем (12%) выше, чем у поволжских финно-угров (8%).

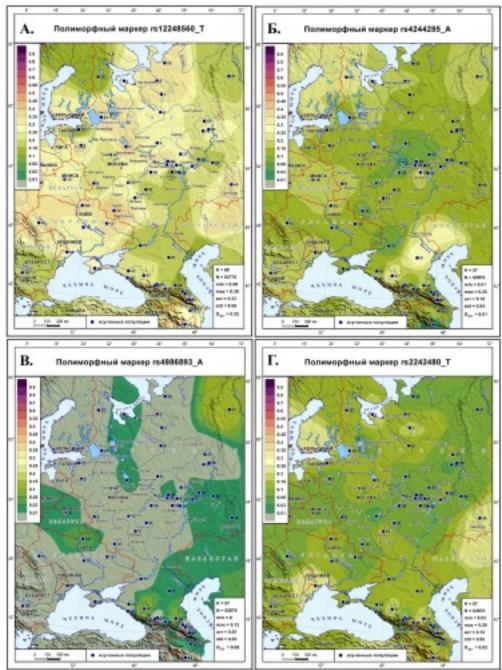


Рисунок 2. Генетический ландшафт распространения маркеров ABCG2, ADRB1 и CYP2C8: A) маркера rs2231142 (T) гена ABCG2, Б) маркера rs2231137 (T) гена ABCG2, B) маркера rs1801252 (G) гена ADRB1, Г) маркера rs10509681 (C) гена CYP2C8.

Генетический ландшафт распространения маркеров CYP2C9, CYP4F2, CES1

Маркеры этих генов относятся к действию лекарств – антикоагулянтов, антиагрегантов и нестероидных противоовспалительных.

У **rs1057910** (C) гена CYP2C9 (рисунок 3A) сглаженный генетический рельеф с экстремумами на периферии: на севере падение частоты до нуля у ненцев и подъем у северных карел до 19%, на юге – падение частоты до нуля у калмыков и подъем частоты у адыгов (26%), и на Кавказе средняя частота (15%) выше среднерегиональной (8%). На остальном пространстве Восточной Европы встречаются лишь локальные колебания частоты.

rs1799853 (**T**) **гена CYP2C9** (рисунок 3Б) хотя имеет вдвое больший диапазон частоты (0-50%), но его генетический ландшафт почти столь же невыразителен. Максимальная частота 50% обнаружена лишь у фарсиязычных народов Закавказья. Но средняя частота на Кавказе (9%) варьирует в тех же пределах: от 0 до 18% в Дагестане, от 0% у ненцев до 19% в Украине. Хотя просматривается тенденция клинальной изменчивости (снижение частоты с запада на восток), но она скрыта локальными колебаниями частоты.

rs2108622 (**T**) **гена CYP4F2** (рисунок 3B) демонстрирует четко выраженную клинальную изменчивость- увеличение частоты с северо-запада (9%) на восток и юго-восток (46%), нарушенную коридором повышенных частот (20-27%) от белорусов через Рязань до юга Архангельской области. Высокие частоты сосредоточены на северо-востоке (поморы, ненцы, манси), левобережье Волги и юге региона, включая Крым и Кавказ.

rs2244613 (**G**) **гена CES1** (рисунок 3Г) характеризуется выраженным вектором увеличения частоты с северо-запада (18% у карел) на восток (46-54% у ненцев, манси, башкир) и юг (46% у калмыков и в Дагестане). Область высоких частот охватывает популяции правобережья Волги (35-44% у марийцев и чувашей), многие народы Северного Кавказа (33-45%) и Закавказья (33-38%).

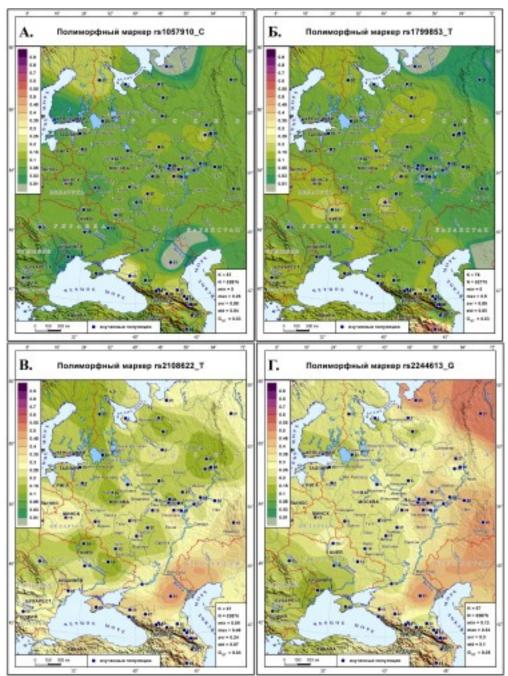


Рисунок 3. Генетический ландшафт распространения маркеров CYP2C9, CYP4F2, CES1: A) маркера rs1057910 (C) гена CYP2C9, Б) маркера rs1799853 (T) гена CYP2C9, B) маркера rs2108622 (T) гена CYP4F2, Г) маркера rs2244613 (G) гена CES1.

Генетический ландшафт распространения маркеров VKORC1 и SLCO1B1

Маркеры VKORC1 влияют на эффективность применения антикоагулянтов непрямого действия, например, варфарина. Ген

SLCO1B1 кодирует полипептид-переносчик органических анионов, участвующий в транспорте статинов.

rs7294 (**T**) **гена VKORC1** (рисунок 4A) характеризуется повышенными частотами на северо-западе (44% у вепсов, 45% у белорусов). Средняя частота маркера одинакова у западных финно-угров и славян (37%). У южных русских частота около 42%, в Калужской и Рязанской областях поднимается до 50%. Минимумы обнаруживаются на севере у ненцев (9%) и манси (15%), в Приуралье у удмуртов (16%), на юге у калмыков (7%). Но в целом низкие частоты сосредоточены на юго-востоке, формируя вектор падения частоты с северо-запада на юго-восток. На Кавказе обнаружены локальные максимумы (46% у чеченцев и ингушей, 42-44% у армян и грузин).

rs9923231 (C) гена VKORC1 (рисунок 4Б) повторяет генетический ландшафт предыдущего маркера, но отличается не только вдвое большей средней частотой (62%) но и намного большим разбросом частот (73% вместо 43%). При этом становятся заметнее перепады частоты у русских Архангельской области (48-64%).

rs9934438 (G) гена VKORC1 (рисунок 4B) обладает генетическим ландшафтом практически неотличимым от предыдущего.

rs4149056 (С) **гена SLCO1B1** (рисунок 4Г) характеризуется тем же вектором снижения частоты с северо-запада (33% у карел и вепсов) на юг (6-10% в Крыму и на Кавказе) и юго-восток (14-15% у башкир и калмыков). Полоса повышенных частот (28-30%) тянется от нижегородцев к казакам, а с юга ее огибает полоса низких частот (10-14% в Молдавии, у степных тюрков и калмыков). Локальный минимум у манси (5%) соседствует с повышенными частотами (24-27% на Русском Севере и у ненцев.

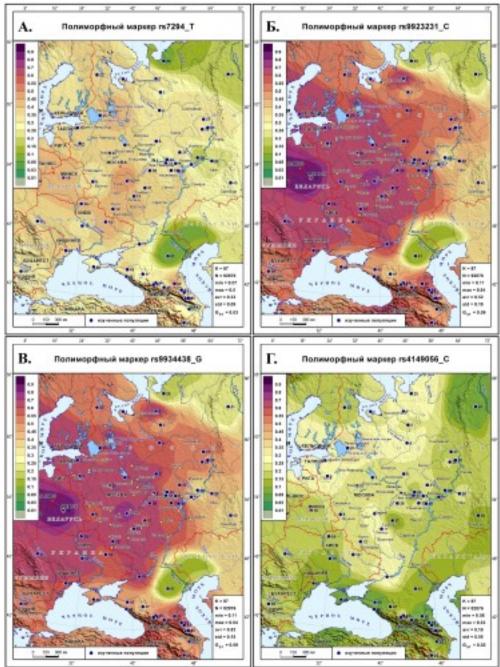


Рисунок 4. Генетический ландшафт распространения маркеров VKORC1 и SLCO1B1: A) маркера rs7294 (T) гена VKORC1, Б) маркера rs9923231 (C) гена VKORC1, B) маркера rs9934438 (G) гена VKORC1, Г) маркера rs4149056 (C) гена SLCO1B1.

Положение популяций Восточной Европы в генетическом пространстве изменчивости фармакогенетических ДНК-маркеров

Для получения общей картины изменчивости авторы провели анализ главных компонент, отобрав популяции, для которых наиболее детально изучены частоты не только 24 кардио-маркеров, но и 60 общих фармакогенетических маркеров. В общий анализ включены 13 метапопуляций (рисунок 5) со средней выборкой 158 человек.

В генетическом пространстве главных компонент изменчивости 60 фарма-маркеров выделились три кластера (рисунок 5A), условно названные «северный», «западный» и «восточный». «Северный» кластер включил западные финноязычные популяции (вепсов, водь, ижору, карел, саамов) и русских Архангельской области; «западный» кластер включил все остальные русские популяции, украинцев и субэтносы мордвы; «восточный» кластер включил все тюрко- и финноязычные популяции Приуралья, за исключением самых северных коми-пермяков, приближающихся к «северному» кластеру. Таким образом, эти кластеры согласуются с географическим расположением популяций и приближаются к селективно-нейтральным паттерну распределения частот.

При выделении из широкой фарма-панели только «кардио-маркеров» (рисунок 5Б) сохраняются все три кластера, но есть и

перемены. «Северный» кластер становится очень рыхлым за счет больших отличий карел, «западный» кластер, напротив, уплотняется. Но оба кластера не меняют состав в отличие от «восточного», в который вошли коми-пермяки, но ушли на север марийцы и чуваши.

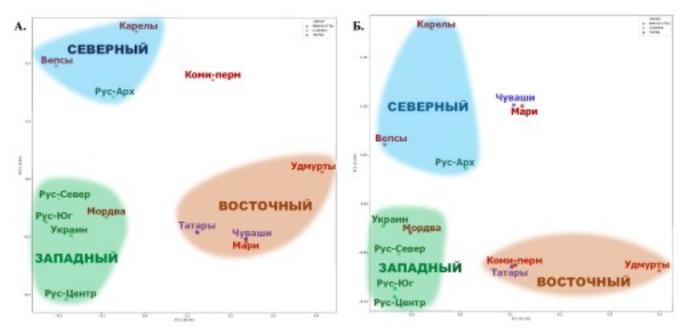


Рисунок 5. Положение изученных популяций Восточной Европы и Урало-Поволжья в генетическом пространстве 1 и 2 главных компонент: А) по общей панели «фарма» маркеров; Б) по панели «кардио» маркеров. На обоих графиках зеленым цветом отмечены популяции славянских народов, бордовым – финноязычных, фиолетовым – тюркоязычных.

Сравнение геногеографии 24 ДНК-маркеров с изменчивостью массива 60 разных фармакогенетических ДНК-маркеров проведено и для всей Восточной Европы, и для трех ее регионов – Кавказа, Центральной России, Поволжья. Выявленное во всех регионах своеобразие фармакогенетических ДНК-маркеров сердечно-сосудистых заболеваний может быть связано только с действием отбора. Во всех регионах паттерн распределения частот «кардио-маркеров» отличается и от маркеров общей фармакологической панели, и от селективно-нейтрального генетического ландшафта. При этом для разных регионов нет единого правила при переходе от совокупности фарма-маркеров к ДНК-маркерам отдельной группы заболеваний. Но при анализе специализированных «кардио-маркеров» эффект отбора становится более явным. Совокупность результатов позволяет предполагать, что действие отбора различно и по разным группам заболеваний, и по разным факторам воздействия на организм в рамках одной группы заболеваний, и в разных регионах.

Как итог работы, авторами создан картографический атлас, включающий карты распространения в народонаселении Восточной Европы 24 фармакогенетических маркеров кардиоваскулярных заболеваний. Эти карты могут использоваться в персонифицированной терапии для адаптации фармакогенетических тестов для конкретного пациента в зависимости от его этногеографического происхождения.

Источник:

Пылёв В.Ю., Агджоян А.Т., Горин И.О., Петрушенко В.С., Почешхова Э.А., Мирзаев К.Б., Балановская Е.В. Популяционный биобанк как основа для выявления пространственной изменчивости клинически значимых фармакогенетических биомаркеров сердечно-сосудистых заболеваний // Кардиоваскудярная терапия и профилактика. 2022. Т. 21. № 11

https://doi.org/10.15829/1728-8800-2022-3430