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Medical diagnosis has been shaped through description of 
organ dysfunctions and extraction of shared key symp-
toms, which categorizes a group of individuals into a 

specific disease to provide an optimal treatment. The earliest physi-
cians in ancient Egypt empirically made disease diagnoses based on 
clinical symptoms, palpitation and auscultation (~2600 BC)1. Since 
then, physicians have refined the disease diagnosis by empirically 
categorizing the observed symptoms (for example, cough, sputum 
and fever) to describe underlying dysfunction (for example, pneu-
monia, a lung infection). An increased understanding of organ 
functions and the availability of diagnostic tests including biomark-
ers and imaging techniques have contributed to the current disease 
classifications, such as the International Classification of Diseases 
(ICD)2 and phecode3.

In the past decades, genome-wide association studies (GWASs)4 
and phenome-wide association studies (PheWASs)5 have provided 
novel insights into the biological basis underlying disease diag-
noses. While disease pathogenesis is quite multifactorial, genetic 
underpinnings provide us with one way to independently assess the 
validity of historically defined disease classifications. To this end, a 
comprehensive catalog of disease genetics is warranted. While pre-
vious works have broadly contributed the catalog6, current genetic 

studies are still short of comprehensiveness in three ways: (1) popu-
lation, in that the vast majority of GWASs have been predominated 
by European populations7; (2) scope of phenotypes, which were 
mostly limited to predetermined diseases on which participants’ 
recruitment had been performed; and (3) a systematic method to 
interpret a plethora of summary results for understanding disease 
pathogenesis. We thus need to promote equity in genetic studies 
by sharing the results of genetic studies of deep phenotypes from 
diverse populations.

To expand the atlas of genetic associations, here we conducted 
220 deep-phenotype GWASs (that is, 197 electronic medical 
records (EMR)-based disease and medication records and 23 bio-
markers) in BioBank Japan (BBJ), including 108 phenotypes on 
which GWAS has never been conducted in East Asian populations. 
We then conducted GWASs for corresponding phenotypes in UK 
Biobank (UKB) and FinnGen, and performed cross-population 
meta-analyses (ntotal = 628,000). We sought to elucidate the land-
scape of pleiotropy and genetic correlation across diseases and 
populations. Furthermore, we applied DeGAs8 to perform trun-
cated singular-value decomposition (TSVD) on matrices of GWAS 
summary statistics of 159 diseases in Japanese and European ances-
tries, and derived latent components shared across the diseases.  
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We interpreted the derived components by (1) functional annota-
tion of genetic variants explaining the component, (2) identification 
of important cell types where the genes contributing to each com-
ponent are specifically regulated and (3) projection of GWASs of 
biomarkers or metabolomes into the component space. The latent 
components recapitulated the hierarchy of current disease classifi-
cations, while different diseases sometimes converged on the same 
component which implicated shared biological pathways and rel-
evant tissues. We classified a group of similar diseases (for exam-
ple, allergic diseases) into subgroups based on these components. 
Analogous to the conventional classification of diseases structured 
by the shared symptoms, an atlas of genetic studies suggested the 
latent structure behind human diseases, which can elucidate the 
genetic variants, genes, organs and biological functions underlying 
human diseases.

Results
GWAS of 220 traits in BBJ and cross-population meta-analysis. 
An overview of this study is presented in Extended Data Fig. 1. BBJ 
is a nationwide biobank in Japan, and recruited participants based 
on the diagnosis of at least 1 of 47 target diseases (Supplementary 
Notes)9. Along with the target disease status, deep-phenotype data, 
such as past medical history (PMH), drug prescription records 
(~7 million), text data retrieved from EMR and biomarkers, have 
been collected. Beyond the collection of case samples based on the 
predetermined target diseases, the PMH and EMR have provided 
broader insights into disease genetics, as shown in recently launched 
biobanks such as UKB10 and BioVU11. We therefore curated the 
PMH, performed text-mining of the EMR and merged them with 
47 target disease statuses12. We created individual-level phenotypes 
on 159 disease endpoints (38 target diseases with median 1.25 times 
increase in case samples and 121 novel disease endpoints) and 23 
categories of medication usage. We then systematically mapped the 
disease endpoints into (1) phecode3, which is a hierarchical group-
ing system of EHR-based disease codes to conduct PheWAS, and 
(2) ICD10 (ref. 2), which is also a medical classification list by the 
World Health Organization (WHO) and widely used for billing 
purposes, to enable harmonized GWASs in UKB and FinnGen. We 
also analyzed a quantitative phenotype of 38 biomarkers in BBJ, 
of which individual phenotype data are available in UKB13. Using 
genotypes imputed with the 1000 Genomes Project Phase 3 data 
(n = 2,504) and population-specific whole-genome sequencing data 
(n = 1,037) as a reference panel14, we conducted the GWASs of 159 
binary disease endpoints, 38 biomarkers and 23 medication usages 
in ~179,000 individuals in BBJ (Fig. 1a–c and Supplementary Tables 
1 and 2 for phenotype summary). To maximize statistical power, 
we used a linear mixed model implemented in SAIGE (v.0.37)15 
for binary traits and BOLT (v.2.3.4)16 for quantitative traits. By 
using linkage disequilibrium (LD)-score regression (LDSC)17, we 
confirmed that potential biases were controlled in the GWASs 
(Supplementary Table 3). In this expanded scope of GWASs in the 
Japanese population, we identified 519 genome-wide significant loci 
across 159 disease endpoints, 2,249 across 38 biomarkers, of which 
113 and 281 loci were new, respectively (P < 5.0 × 10−8; Methods and 
Supplementary Table 4). We conducted the initial medication-usage 
GWASs in East Asian populations and detected 215 genome-wide 
significant loci across 23 traits (Methods). These signals under-
score the value of (1) conducting GWASs in non-Europeans and 
(2) expanding the scope of phenotypes by incorporating biobank 
resources such as PMH and EMR. For example, we detected an East 
Asian-specific variant, rs140780894, at the major histocompatibility 
complex (MHC) locus in pulmonary tuberculosis (PTB; odds ratio 
(OR) =1.2, P = 2.9 × 10−23, minor allele frequency (MAF)EAS = 0.24; 
Extended Data Fig. 2a), which was not present in the European pop-
ulation (minor allele count (MAC)EUR = 0)18. PTB is a serious global 
health burden and relatively endemic in Japan19 (annual incidence 

per 100,000 was 14 in Japan but 8 in the United Kingdom and 3 in 
the United States in 2018(ref. 20). Because PTB, an infectious dis-
ease, can be treatable and remittable, we substantially increased the 
number of cases by combining the participants with PMH of PTB 
to the patients with active PTB at the time of recruitment (from 549  
(ref. 12) to 7,800 case individuals). We also identified new signals in 
common diseases that had not been target diseases but were included 
in the PMH record, such as rs715 at 3ʹ UTR of CPS1 in cholelithiasis 
(Extended Data Fig. 2b; OR = 0.87, P = 9.6 × 10−13) and rs2976397 
at the PSCA locus in gastric ulcer, gastric cancer and gastric polyp 
(Extended Data Fig. 2c; OR = 0.86, P = 6.1 × 10−24 for gastric ulcer). 
We detected pleiotropic functional variants, such as a deleterious 
missense variant, rs28362459 (p.Leu20Arg), in FUT3 associated 
with gall bladder polyp (OR = 1.46, P = 5.1 × 10−11) and cholelithia-
sis (OR = 1.11, P = 7.3 × 10−9; Extended Data Fig. 2d), and a splice 
donor variant, rs56043070 (c.89 + 1 G > A), causing loss of function 
of GCSAML associated with urticaria (OR = 1.24, P = 6.9 × 10−12; 
Extended Data Fig. 2e), which was previously reported to be asso-
ciated with platelet and reticulocyte counts4. Medication-usage 
GWASs also provided interesting signals as an alternative perspec-
tive for understanding disease genetics21. For example, individuals 
taking HMG CoA reductase inhibitors (C10AA in the Anatomical 
Therapeutic Chemical Classification (ATC)) were likely to har-
bor variations at HMGCR (lead variant at rs4704210, OR = 1.11, 
P = 2.0 × 10−27). Prescription of salicylic acids and derivatives 
(N02BA in ATC) was significantly associated with a rare East Asian 
missense variant in PCSK9, rs151193009 (p.Arg93Cys; OR = 0.75, 
P = 7.1 × 10−11, MAFEAS = 0.0089, MAFEUR = 0.000; Extended Data 
Fig. 2f), which might indicate a strong protective effect against 
thromboembolic diseases in general.

We next conducted GWASs of corresponding phenotypes (that 
is, disease endpoints and biomarkers) that can be mapped in UKB 
and FinnGen (196 and 128 traits, respectively; Methods), and col-
lected summary statistics of a medication-usage GWAS conducted 
in UKB21 (23 traits; Supplementary Table 5). To confirm that the 
signals identified in BBJ were validated across populations, we 
systematically compared the effect sizes of the genome-wide sig-
nificant variants in BBJ with those in a European dataset across 
binary and quantitative traits (Methods). The loci identified in 
BBJ GWASs were successfully validated in the same effect direc-
tion (2,171 of 2,305 (94.2%), P < 10−325 in sign test) and with high 
effect-size correlation (Extended Data Fig. 3). We also note that the 
genetic correlations encompassing genome-wide polygenic signals 
were generally high between BBJ and European GWASs (median 
ρge = 0.82; Supplementary Table 6 and Methods).

Motivated by the high replicability, we performed cross-population 
meta-analyses of these 220 harmonized phenotypes across three 
biobanks (Methods). We identified 1,730 disease-associated, 12,066 
biomarker-associated and 1,018 medication-associated loci in total, 
of which 571, 4,471 and 301 were new, respectively (Fig. 1d and 
Supplementary Table 7). We note that when we strictly control for 
multiple testing burden by Bonferroni correction (P < 5.0 × 10−8/
(220 phenotypes × 3 populations) = 7.6 × 10−11), the number of 
significantly associated loci was 844, 7,309 and 500, respectively. 
All these summary statistics of GWASs are openly distributed 
through the PheWeb.jp website, with interactive Manhattan plots, 
LocusZoom plots and PheWAS plots based on the PheWeb plat-
form22. Together, we successfully expanded the genomic map of 
human complex traits in terms of populations and scope of phe-
notypes through conducting deep-phenotype GWASs across global 
nationwide biobanks.

The regional landscape of pleiotropy. Because human traits are 
highly polygenic and the observed variations within the human 
genome are finite in number, pleiotropy, where a single variant affects 
multiple traits, is pervasive23. While pleiotropy has been intensively 
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studied in European populations by compiling previous GWASs23–26,  
the landscape of pleiotropy in non-European populations has 
been understudied. By leveraging this opportunity for comparing 

the genetics of deep phenotypes across populations, we sought to 
investigate the landscape of regional pleiotropy in both Japanese 
and European populations. We defined the degree of pleiotropy as 
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Fig. 1 | Overview of the identified loci in the cross-population meta-analyses of 220 deep-phenotype GWASs. a–c, The pie charts describe the 
phenotypes analyzed in this study. The disease endpoints (a; ntrait = 159) were categorized based on the ICD10 classifications (A to Z; Supplementary  
Table 1a), the biomarkers (b; ntrait = 38; Supplementary Table 1b) were classified into nine categories and medication usage (c; ntrait = 23) was categorized 
based on the ATC system (A to S; Supplementary Table 1c). d, The genome-wide significant loci identified in the cross-population meta-analyses and 
pleiotropic loci (P < 5.0 × 10−8). The traits (rows) are sorted as shown in the pie chart, and each dot represents a significant locus in each trait. Pleiotropic 
loci are annotated by lines with a locus symbol.
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the number of significant associations per variant (P < 5.0 × 10−8)24. 
In the Japanese, rs671, a missense variant at the ALDH2 locus, 
harbored the largest number of genome-wide significant asso-
ciations (47 traits; Fig. 2a). Following this, rs2523559 at the MHC 
locus (24 traits) and rs1260326 at the GCKR locus (20 traits) were 
most pleiotropic. In Europeans, rs9265949 at the MHC locus har-
bored the largest number of genome-wide significant associations  
(46 traits; Fig. 2b), followed by rs7310615 at the ATXN2/SH2B3 locus 
(38 traits), rs1260326 at the GCKR locus (28 traits) and rs2519093 at 
the ABO locus (28 traits). We note that those pleiotropic loci were 
not affected when we adjusted for phenotypically closely correlated 
traits (Extended Data Figs. 4 and 5) or genetically closely related 
traits (Extended Data Fig. 5 and methods in the Supplementary 
Notes). Notably, the ALDH2 locus (pleiotropic in Japanese) and 
the MHC locus (pleiotropic in Japanese and Europeans) are known 
to be under recent positive selection27,28. To systematically assess 
whether pleiotropic regions in the genome were likely to be under 
selection pressure in each of the populations, we investigated the 
enrichment of the signatures of recent positive selection quanti-
fied by the metric singleton density score (SDS)27 values within the 
pleiotropic loci (Methods). Intriguingly, when compared with those 
under the null hypothesis, we observed significantly higher values 
of SDS χ2 values within the pleiotropic loci, and this fold change 
increased as the number of associations increased (that is, more 
pleiotropic) in both Japanese and Europeans (Fig. 2c,d). To summa-
rize, the cross-population atlas of genetic associations elucidated the 
broadly shared landscape of pleiotropy, which implied a potential 
connection to natural selection signatures affecting diverse human 
populations.

Pleiotropic associations in MHC and ABO locus. Given the high 
degree of pleiotropy in both populations, we next sought to fine-map 
the pleiotropic signals within the MHC locus. To this end, we 
imputed the classical HLA alleles in BBJ and UKB, and performed 
association tests for 159 disease endpoints and 38 biomarkers (Fig. 
3a,b). After the fine-mapping and conditional analyses (Methods), 
we identified 75 and 129 independent association signals in BBJ and 
UKB, respectively (P < 5.0 × 10−8; Supplementary Table 8). Among 
53 and 63 traits associated with MHC in BBJ and UKB, 2 and 9 
traits had never been previously shown to be associated with MHC, 
respectively. Overall, HLA-B in class I and HLA-DRB1 in class II 
harbored the largest number of associations in both BBJ and UKB. 
For example, we fine-mapped the strong signal associated with PTB 
to HLA-DRβ1 Ser57 (OR = 1.20, P = 7.1 × 10−19) in BBJ. This is the 
third line of evidence showing the robust association of HLA with 
tuberculosis identified to date29,30, and we fine-mapped the signal 
to HLA-DRB1. Interestingly, HLA-DRβ1 at position 57 also showed 
pleiotropic associations with other autoimmune and thyroid-related 
diseases, such as Graves’ disease, hyperthyroidism, Hashimoto’s dis-
ease, Sjögren’s syndrome, chronic hepatitis B and atopic dermatitis 
in BBJ. Of note, the effect direction of the association of HLA-DRβ1 
Ser57 was the same between hyperthyroid status (OR = 1.29, 
P = 2.6 × 10−14 in Graves’ disease and OR = 1.37, P = 1.4 × 10−8 in 
hyperthyroidism) and hypothyroid status (OR = 1.50, P = 9.0 × 10−8 
in Hashimoto’s disease and OR = 1.31, P = 1.5 × 10-7 in hypothyroid-
ism), despite the opposite direction of thyroid hormone abnormality. 
This association of HLA-DRβ1 was also observed in Sjögren’s syn-
drome (OR = 2.04, P = 7.9 × 10−12), which might underlie epidemio-
logical comorbidities of these diseases31. Other novel associations 
in BBJ included HLA-DRβ1 Asn197 with sarcoidosis (OR = 2.07, 
P = 3.7 × 10−8), and four independent signals with chronic sinusitis 
(that is, HLA-DRA, HLA-B, HLA-A and HLA-DQA1).

Another representative pleiotropic locus in the human genome 
is the ABO locus. We performed ABO blood-type PheWAS in BBJ 
and UKB (Fig. 3c,d). We estimated the ABO blood type from three 
variants (rs8176747, rs8176746 and rs8176719 at 9q34.2)32, and 

associated them with the risk of diseases and quantitative traits for 
each blood group. A variety of phenotypes, including common dis-
eases such as myocardial infarction, as well as biomarkers such as 
blood cell traits and lipids, were associated with the blood types in 
both biobanks (Supplementary Table 9). We replicated an increased 
risk of gastric cancer in blood-type A as well as an increased risk of  
gastric ulcer in blood-type O in BBJ33.

Genetic correlation across populations. The interplay between 
polygenicity and pleiotropy suggests widespread genetic cor-
relations among complex human traits34. Genetic relationships 
among human diseases have contributed to the refinement of dis-
ease classifications35 and elucidation of the biology underlying the 
epidemiological comorbidity34. To obtain insights into the inter-
connections among human traits and compare them across popu-
lations, we computed pairwise genetic correlations (rg) across 106 
traits (in Japanese) and 148 traits (in Europeans) with Z-score for 
h2

SNP (that is, SNP heritability of the trait) > 2, using bivariate LDSC 
(Methods). We then defined the correlated trait domains by search-
ing for the phenotype blocks with pairwise rg > 0.7 within 70% of rg 
values in the block on the hierarchically clustered matrix of pair-
wise rg values using a greedy algorithm (Methods and Extended 
Data Fig. 6). We detected domains of tightly correlated phenotypes, 
such as (1) cardiovascular- acting medications, (2) coronary artery 
diseases, (3) type 2 diabetes-related phenotypes, (4) allergy-related 
phenotypes and (5) blood cell phenotypes in BBJ (Extended Data 
Fig. 6a). These domains implicated the shared genetic backgrounds 
on the similar diseases and their treatments (for example, (2) dis-
eases of the circulatory system in ICD10 and their treatments) and 
diagnostic biomarkers (for example, (3) glucose and hemoglobin 
A1C (HbA1c) in type 2 diabetes). Intriguingly, the corresponding 
trait domains were mostly identified in UKB as well (Extended Data  
Fig. 6b). We considered that the current clinical boundaries for 
human diseases broadly reflect the shared genetic etiology across 
populations, despite differences in populations and despite potential 
differences in diagnostic, environmental and prescription practices.

Deconvolution of GWAS statistics provides insights into biol-
ogy. A major challenge in genetic correlation is that the rg is a sca-
lar value between two traits, which collapses the correlation over 
the whole genome into an averaged metric36. This approach is not 
straightforward in specifying a set of genetic variants driving the 
observed correlation, which would pinpoint biological pathways 
explaining the shared pathogenesis. To address this, genetic asso-
ciation statistics of diverse phenotypes have implicated latent struc-
tures underlying genotype–phenotype associations without a prior 
hypothesis. In particular, matrix decomposition of GWAS statistics 
is a promising approach8,37,38, which derives orthogonal compo-
nents that explain association variance across multiple traits. This 
decomposition addresses two challenges in current genetic correla-
tion studies. First, it informs us of genetic variants that explain the 
shared structure across multiple diseases, thereby enabling func-
tional interpretation of the component. Second, it can be applicable 
to subsignificant associations, which are important in understand-
ing contribution of common variants in rare diseases37 or in genetic 
studies in underrepresented populations where lower statistical 
power is inevitable.

Therefore, we applied DeGAs8 on a matrix of the disease 
GWAS summary statistics in Japanese and European individuals  
(ndisease = 159; Fig. 4a,b). To interpret the derived latent compo-
nents, we annotated the genetic variants explaining each compo-
nent (1) through GREAT genomic region ontology enrichment 
analysis39; (2) through identification of relevant cell types using 
tissue-specific regulatory DNA (ENCODE3 (ref. 40)) and expres-
sion (GTEx41) profiles; and (3) by projecting biomarker GWASs 
in BBJ and UKB (nbiomarker = 38) or metabolome GWASs in the 
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East Asian (EAS) cohort of the Tohoku Medical Megabank 
Organization (ToMMo; Methods) and the European (EUR) cohort42  
(nmetabolite_EAS = 206, nmetabolite_EUR = 248) into the component space 
derived from disease genetics (Fig. 4a). We applied TSVD on the 
sparse Z-score matrix of 22,980 variants, 159 phenotypes each in 2 
populations (Japanese and Europeans), and derived 40 components 
that together explained 36.7% of the variance (Extended Data Fig. 7 
and Supplementary Fig. 1).

Globally, similar diseases as defined by the conventional ICD10 
classification were explained by the same components, based on 
DeGAs trait squared cosine score that quantifies component load-
ings8 (Fig. 4c,d and Extended Data Fig. 8). This would be consid-
ered as a hypothesis-free support of the historically defined disease 
classifications. For example, component 1 explained the genetic 
association patterns of diabetes (E10 and E11 in ICD10) and com-
ponent 2 explained those of cardiac and vascular diseases (I00–
I83), in both populations. Functional annotation of the genetic 
variants explaining these components showed that component 1 
(diabetes component) was associated with abnormal pancreas size 
(binomial Penrichment = 7.7 × 10−19) as a human phenotype, whereas 
component 2 (cardiovascular disease component) was associated 
with xanthelasma (that is, cholesterol accumulation on the eye-
lids; binomial Penrichment = 3.0 × 10−10). Further, the genes compris-
ing component 1 were enriched in genes specifically expressed in 
the pancreas (Penrichment = 5.5 × 10−4), and those comprising compo-
nent 2 were enriched in genes specifically expressed in the aorta 
(Penrichment = 1.9 × 10−3; Extended Data Fig. 9). By projecting the 
biomarker GWASs in BBJ and UKB and the metabolite GWASs in 

independent cohorts of EAS and EUR into this component space, 
we observed that component 1 represented the genetics of glucose 
and HbA1c, and component 2 represented the genetics of blood 
pressure and lipids, which are biologically relevant. This decon-
volution–projection analysis suggested the latent genetic structure 
behind human diseases, which recapitulated the underlying biologi-
cal functions, relevant tissues and associated markers.

The latent components shared across diseases explained the con-
vergent biology behind etiologically similar diseases. For example, 
component 10 explained the genetics of cholelithiasis (gall stone), 
cholecystitis (inflammation of gall bladder) and gall bladder polyp 
(Fig. 5a). The projection of publicly available EUR metabolite 
GWASs into the component space identified that component 10 
represented the bilirubin metabolism pathway. Component 10 was 
composed of variants involved in intestinal cholesterol absorption in 
mouse phenotype (binomial Penrichment = 3.8 × 10−10). This is biologi-
cally relevant, since increased absorption of intestinal cholesterol is 
a major cause of cholelithiasis, which also causes cholecystitis43. The 
projection of the metabolite GWASs in an independent Japanese 
cohort of ToMMo showed the connection between component 10 
and glycine that conjugates with bile acids44.

Some components were further utilized to interpret the under-
powered GWAS with the use of the well-powered GWAS, and 
to identify the contributor of shared genetics between differ-
ent diseases. For example, we complemented an underpowered 
varicose vein GWAS in BBJ (ncase = 474, genome-wide significant 
loci = 0) with a more powered GWAS in Europeans (ncase = 22,037, 
genome-wide significant loci = 70). Both GWASs were mostly  

a

Japanese

b Europeans

c

d
M

H
C

A
LD

H
2

M
H

C

S
H

2B
3

G
C

K
R

G
C

K
R

0

20

40

0 20 40

0

10

20

0 20 40

N
um

be
r 

of
 a

ss
oc

ia
tio

ns
(P

 <
 5

 ×
 1

0–8
)

N
um

be
r 

of
 a

ss
oc

ia
tio

ns
(P

 <
 5

 ×
 1

0–8
)

F
ol

d 
ch

an
ge

 o
f s

um
 o

f S
D

S
χ2  

va
lu

es

Number of associations
(P < 5 × 10–8)

F
ol

d 
ch

an
ge

 o
f s

um
 o

f S
D

S
χ2  

va
lu

es

Number of associations
(P < 5 × 10–8)

S
T

N
1

A
P

O
B

F
G

F
5

T
E

R
T

H
B

S
1L

C
D

K
N

2B
-A

S
1

A
B

O

S
LC

22
A

2

A
B

O

A
P

O
E

T
R

IB
1

F
A

D
S

1

F
T

O

G
A

T
A

4

P
P

A
R

G

N
F

K
B

1

C
C

D
C

26

N
C

A
N

Chromosome

1 2 3 4 5 6 7 8 9 11 13 15 17 20

Chromosome

1 2 3 4 5 6 7 8 9 11 13 15 17 20

0

10

20

30

40

50

0

10

20

30

40

50

Fig. 2 | Number of significant associations per variant. a,b, The Manhattan-like plots show the number of significant associations (P < 5.0 × 10−8) at each 
tested genetic variant for all traits (ntrait = 220) in Japanese (a) and in European GWASs (b). Loci with a large number of associations were annotated 
based on the closest genes of each variant. c,d, The plots indicate the fold change of the sum of SDS χ2 within variants with a larger number of significant 
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regression line based on local polynomial regression fitting.
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represented by component 11, which was explained by vari-
ants related to abnormal vascular development (binomial 
Penrichment = 4.2 × 10−7; Fig. 5b). Another example is component 27, 
which was shared with rheumatoid arthritis and systemic lupus 
erythematosus, two distinct but representative autoimmune dis-
eases. Component 27 was explained by the variants associated 
with interleukin secretion and plasma cell number (binomial 
Penrichment = 6.1 × 10−10 and 9.3 × 10−10, respectively), and significantly 
enriched in the DNase I hypersensitive site (DHS) signature of lym-
phoid tissue (Penrichment = 1.3 × 10−4; Fig. 5c). This might suggest the 
convergent etiology of the two autoimmune diseases, which was not 
elucidated by the genetic correlation alone.

Finally, we aimed at hypothesis-free categorization of diseases 
based on these components. Historically, hypersensitivity reactions 

have been classified into four types (for example, types I to IV)45, 
but the clear subcategorization of allergic diseases based on this 
pathogenesis and whether the categorization can be achieved solely 
by genetics were unknown. In TSVD results, the allergic diseases 
(mostly J and L in ICD10) were represented by the four components 
3, 16, 26 and 34. By combining these components as axis-1 (com-
ponents 3 and 16) and axis-2 (components 26 and 34), and com-
paring the cumulative variance explained by these axes, we defined 
axis-1 dominant allergic diseases (for example, asthma and aller-
gic rhinitis) and axis-2 dominant allergic diseases (metal allergy, 
contact dermatitis and atopic dermatitis; Fig. 5d). Intriguingly, 
the axis-1 dominant diseases etiologically corresponded to type I 
allergy (that is, immediate hypersensitivity). The variants explain-
ing axis-1 were biologically related to IgE secretion and T helper 
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2 (Th2) cells (binomial Penrichment = 9.9 × 10−46 and 2.9 × 10−44, respec-
tively). Furthermore, GWAS of eosinophil count was projected onto  
axis-1, which recapitulated the biology of type I allergy46. By contrast, 
the axis-2 dominant diseases corresponded to type IV allergy (that 
is, cell-mediated delayed hypersensitivity). The variants explaining 
axis-2 were associated with interleukin-13 and interferon secre-
tion (binomial Penrichment = 1.6 × 10−10 and 5.2 × 10−9, respectively), 
and GWAS of C-reactive protein was projected onto axis-2, which 
was distinct from axis-1 (ref. 47). To summarize, our deconvolution 
approach (1) recapitulated the existing disease classifications, (2) 
implicated underlying biological mechanisms and relevant tissues 
shared among related diseases and (3) suggested potential applica-
tion for genetics-driven categorization of human diseases.

Discussion
Here, we performed 220 GWASs of human traits by incorporating 
the PMH and EMR data in BBJ, substantially expanding the atlas of 
genotype–phenotype associations in non-Europeans. We note that 
we additionally discovered 92 loci across 38 disease endpoints of 
which we had previously conducted GWASs in BBJ12, explaining an 
additional 0.21% of trait heritability on average in the liability thresh-
old model, which highlights the value of curating PMH and EMR in 

biobanks. We then systematically compared their genetic basis with 
GWASs of corresponding phenotypes in Europeans. We confirmed 
the global replication of loci identified in BBJ, and discovered 5,343 
new loci through cross-population meta-analyses. The results are 
openly shared through web resources, which will be a platform to 
accelerate further research such as functional follow-up studies and 
drug discovery48. Of note, leveraging these well-powered GWASs, 
we observed that the genes associated with endocrine/metabolic, 
circulatory and respiratory diseases (E, I and J by ICD10) were sys-
tematically enriched in targets of approved medications treating 
those diseases49 (Supplementary Fig. 2). This should motivate us to 
use this expanded resource for genetics-driven novel drug discovery 
and drug repositioning.

The landscape of regional pleiotropy was globally shared across 
populations, and pleiotropic regions tended to have been under 
recent positive selection. One limitation of the current analysis is 
that we did not conduct statistical fine-mapping for every locus we 
identified, which might cause a concern over potential effects due 
to LD tagging for observed pleiotropy. Although we confirmed that 
the same pleiotropic variants were included within the 95% cred-
ible set for representative loci (ALDH2 and GCKR; Supplementary 
Notes), more comprehensive statistical fine-mapping would further 
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illuminate a global landscape of pleiotropic variants in the future. 
Moreover, elucidation of pleiotropy in other populations is war-
ranted to replicate our results. Finally, to highlight the utility of 
deep-phenotype GWASs, we decomposed the cross-population 
genotype–phenotype association patterns by TSVD. The latent 
components derived from TSVD showed the convergent biologi-
cal mechanisms and relevant cell types across diseases, which can 
be utilized for re-evaluation of existing disease classifications. 
The incorporation of biomarker and metabolome GWAS sum-
mary statistics enabled interpretation of the latent components. 
Our approach might suggest a potential avenue for restructuring 
of medical diagnoses through dissecting the shared genetic basis 
across a spectrum of diseases, as analogous to the current disease 
classifications historically and empirically shaped through catego-
rization of key symptoms across a spectrum of organ dysfunctions. 
However, we note that one major challenge in the deconvolution 
analyses is that the derived components and their order are affected 
by selection of phenotypes analyzed as input matrices. Thus, exter-
nal validations are necessary before being generalized and used for 
refinement of disease categorization.

In conclusion, our study substantially expanded the atlas of 
genetic associations, supported the historically defined categories of 
human diseases and should accelerate the discovery of the biologi-
cal basis contributing to complex human diseases.
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Fig. 5 | Examples of disease-component correspondence and biological interpretation of the components by projection and enrichment analysis using 
GREAT. Shown is a representative component explaining a group of diseases based on the contribution score, along with responsible genes, functional 
enrichment results by GREAT, relevant tissues and relevant biomarkers/metabolites. a, The functional annotation of gall bladder-related diseases and 
the component 10. b, The functional annotation of varicose vein and the component 11. c, The functional annotation of autoimmune diseases and the 
component 27. d, The characterization of allergic diseases based on the components 3, 16, 26 and 34. The red bars indicate the sum of squared cosine 
scores of components 3 and 16 (axis 1), whereas the blue bars indicate the sum of squared cosine scores of components 26 and 34 (axis 2). We also 
performed functional characterization of those components by projection analysis and GREAT enrichment analysis. ASN, Asian; EUR, European; GB, gall 
bladder; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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Methods
GWAS of 220 traits in BBJ. All the participants provided written, informed 
consent approved by ethics committees of the Institute of Medical Sciences, the 
University of Tokyo and RIKEN Center for Integrative Medical Sciences. We 
conducted 220 deep-phenotype GWASs in BBJ. BBJ is a prospective biobank that 
collaboratively collected DNA and serum samples from 12 medical institutions 
in Japan and recruited approximately 200,000 participants, mainly of Japanese 
ancestry (Supplementary Notes). Mean age of participants at recruitment was 
63.0 yr old, and 46.3% were female. All study participants had been diagnosed 
with one or more of 47 target diseases by physicians at the cooperating hospitals. 
We previously conducted GWASs of 42 of the 47 target diseases12. In this study, 
we curated the PMH records included in the clinical data, and performed 
text-mining to retrieve disease records from the free-format EMR as well. For 
disease phenotyping, the PMH record has already been curated and formatted 
as a sample × phenotype table. Regarding EMR, we searched for the Japanese 
term of a given disease diagnosis in the cells designated as the presence of PMH, 
which was compiled into a sample × phenotype table. We merged both pieces 
of information with the target disease status, and defined the case status for 159 
diseases with a case count >50 (Supplementary Table 2). As controls, we used 
samples in the cohort without a given diagnosis or related diagnoses, which was 
systematically defined by using the phecode framework3 (Supplementary Table 1). 
For medication-usage phenotyping, we again retrieved information by text-mining 
of 7,018,972 medication records. Then, we categorized each medication trade name 
by using the ATC, WHO, which is used for the classification of active ingredients 
of drugs according to the organ or system on which they act and their therapeutic, 
pharmacological and chemical properties. For biomarker phenotyping, we 
used the same processing and quality control method as previously described 
(Supplementary Table 2 for phenotype summary)13,50. In brief, we generally used 
the laboratory values measured at the participants’ first visit to the recruitment 
center, and excluded measurements outside three times the interquartile range 
(IQR) of the upper/lower quartile across participants. For individuals taking 
anti-hypertensive medications, we added 15 mmHg to systolic blood pressure 
and 10 mmHg to diastolic blood pressure. For individuals taking a statin, we 
applied the following correction to the lipid measurements: (1) total cholesterol 
was divided by 0.8; (2) measured LDL-cholesterol (LDLC) was adjusted as 
LDLC/0.7; (3) derived LDLC from the Friedewald equation was re-derived as (total 
cholesterol/0.8) − HDL-cholesterol (HDLC) − (triglyceride/5).

We genotyped participants with the Illumina HumanOmniExpressExome 
BeadChip or a combination of the Illumina HumanOmniExpress and 
HumanExome BeadChip. Quality control of participants and genotypes was 
performed as described elsewhere14. In this project, we analyzed 178,726 
participants of East Asian ancestry as estimated by the principal component 
analysis (PCA)-based sample selection criteria. The genotype data were further 
imputed with 1000 Genomes Project Phase 3 version 5 genotype data (n = 2,504) 
and Japanese whole-genome sequencing data (n = 1,037) using Minimac3 software. 
After this imputation, we excluded variants with an imputation quality of Rsq < 0.7, 
resulting in 13,530,797 variants analyzed in total.

We conducted GWASs for binary traits (that is, disease endpoints and 
medication usage) by using a generalized linear mixed model implemented in 
SAIGE (v.0.37), which had substantial advantages in terms of (1) maximizing the 
sample size by including genetically related participants and (2) controlling for 
case–control imbalance15, which was the case in many of the disease endpoints in 
this study. We included adjustments for age, age2, sex, age × sex, age2 × sex and the 
top 20 principal components as covariates used in step 1. For sex-specific diseases, 
we alternatively adjusted for age, age2 and the top 20 principal components as 
covariates used in step 1, and we used only controls of the sex to which the disease 
is specific. We conducted GWASs for quantitative traits (that is, biomarkers) by 
using a linear mixed model implemented in BOLT-LMM (v.2.3.4). We included the 
same covariates as used in the binary traits above.

Harmonized GWAS of 220 traits in UKB and FinnGen. We conducted the 
GWASs harmonized with BBJ in UKB and in FinnGen. The UKB project is a 
population-based prospective cohort that recruited approximately 500,000 people 
across the United Kingdom (Supplementary Notes). Mean age of participants at 
recruitment was 56.8 yr old, and 53.8% were female. We defined case and control 
status of 158 disease endpoints, which were originally retrieved from the clinical 
information in UKB and mapped to BBJ phenotypes via phecode (Supplementary 
Table 1). We also analyzed 38 biomarker values provided by the UKB. The 
genotyping was performed using the Applied Biosystems UK BiLEVE Axiom 
Array or the Applied Biosystems UK Biobank Axiom Array. The genotypes were 
further imputed using a combination of the Haplotype Reference Consortium, 
UK10K and 1000 Genomes Project Phase 3 reference panels by IMPUTE4 
software10. In this study, we analyzed 361,194 individuals of white British genetic 
ancestry as determined by the PCA-based sample selection criteria (https://github.
com/Nealelab/UK_Biobank_GWAS/blob/master/ukb31063_eur_selection.R). 
We excluded the variants with (1) an imputation information metric (INFO 
score) ≤ 0.8; (2) MAF ≤ 0.0001 (except for missense and protein-truncating 
variants annotated by VEP51, which were excluded if MAF ≤ 1 × 10−6); and (3) 
PHWE ≤ 1 × 10−10, resulting in 13,791,467 variants analyzed in total. We conducted 

GWASs for 159 disease endpoints by using SAIGE with the same covariates used 
in the BBJ GWAS. For biomarker GWASs, we used publicly available summary 
statistics of UKB biomarker GWASs when available through Neale’s lab website: 
http://www.nealelab.is/uk-biobank/ukbround2announcement, and otherwise 
performed linear regression using PLINK software with the same covariates, 
excluding the genetically related individuals (the first, second or third degree)10. 
For medication-usage GWASs, we used publicly available summary statistics of 
medication usage in UKB21, which was organized by the ATC and thus could be 
harmonized with BBJ GWASs.

FinnGen is a public–private partnership project combining genotype data from 
Finnish biobanks and digital health record data from Finnish health registries 
(Supplementary Notes). Mean age of participants at DNA sample collection was 
51.8 yr old, and 56.3% were female. For GWASs, we used the summary statistics 
of FinnGen release 3 data (accessed through https://www.finngen.fi/en/access_
results). The disease endpoints were mapped to BBJ phenotypes by using ICD10 
codes, and we defined 128 of 159 endpoints in BBJ. The genome coordinates in 
summary statistics were lifted over to hg19, and we analyzed 16,859,359 variants 
after quality control. We did not conduct biomarker and medication-related 
GWASs because the availability of these phenotypes was limited.

Meta-analysis and annotation of the genome-wide significant variants. First, 
we performed intraEuropean meta-analysis when summary statistics of both UKB 
and FinnGen were available, and then performed cross-population meta-analysis 
across three or two cohorts in 159 disease endpoints, 38 biomarker values and 
23 medication-usage GWASs. We conducted these meta-analyses by using the 
inverse-variance method and estimated heterogeneity with Cochran’s Q test with 
METAL software (v.2011-03-25)52. In this meta-analysis, we included all variants 
after quality control in each of the three cohorts. The overlapping variants among 
the cohorts are summarized in Extended Data Fig. 10. The summary statistics of 
primary GWASs in BBJ and cross-population meta-analysis GWASs are openly 
shared without any restrictions.

We adopted the conventional genome-wide significance threshold of 
<5.0 × 10−8, as well as considering the Bonferroni-corrected threshold of 
<7.6 × 10−11 (5.0 × 10−8/(220 phenotypes × 3 populations)) in the context of 
cross-population meta-analysis. We defined independent genome-wide significant 
loci on the basis of genomic positions within ±500 kb from the lead variant. We 
considered a trait-associated locus as novel when the locus within ±1 megabase 
(Mb) from the lead variant did not include any variants that were previously 
reported to be significantly associated with the same disease.

To systematically collect previously reported significant associations 
(5.0 × 10−8) as known variants, we (1) exhaustively searched for previous reports of 
genetic association in a given trait using the GWAS Catalog4, since it is currently 
recognized as a standard and most comprehensive database of genetic associations; 
(2) systematically searched PubMed when the corresponding trait was not included 
in the GWAS Catalog; and (3) exceptionally included preprints in case we have 
collaboratively worked on them, to avoid duplicated publication.

The goal was to comprehensively include only robust and invariant 
associations. In this way, we included 75,230 associations across 181 traits in 1,792 
literatures as of 31 December 2020 (Supplementary Table 10).

We annotated the lead variants using ANNOVAR software, such as rsIDs in 
the dbSNP database (https://www.ncbi.nlm.nih.gov/snp/), the genomic region 
and closest genes, and functional consequences. We also supplemented this 
with the gnomAD database18, and also looked for the allele frequencies in global 
populations as an independent resource.

Replication of significant associations in BBJ. For 2,287 lead variants in the 
genome-wide significant loci of 159 disease endpoints and 38 biomarkers in BBJ, 
we compared the effect sizes and directions with European-only meta-analysis 
when available and with UKB-based summary statistics otherwise. Of them, 1,929 
variants could be compared with the corresponding European GWASs. Thus, 
we performed the Pearson’s correlation test for these variants’ beta values in the 
association test in BBJ and in European GWASs. We also performed the correlation 
tests with variants with PEUR < 0.05 and with those with PEUR < 5.0 × 10−8.

Cross-population genetic correlation. To estimate cross-population genetic-effect 
correlations between BBJ and European GWASs considering polygenic signals, 
we used Popcorn software (v.1.0)53. For this analysis, we restricted the traits to 
those with (1) heritability Z-score from LDSC > 2 (which will be explained later in 
the Methods), and (2) both BBJ and European heritability calculated by Popcorn 
>0.01. We excluded the MHC region from the analysis because of its complex LD 
structure. Using these quality-controlled traits’ summary statistics, we calculated 
the cross-population genetic-effect correlation between EUR and EAS with 
precomputed cross-population scores for EUR and EAS 1000 Genomes Project 
populations provided by the authors.

Evaluation of regional pleiotropy. We assessed the regional pleiotropy based on 
each tested genetic variant separately for BBJ GWASs and for European GWASs 
(that is, intraEuropean meta-analysis when FinnGen GWAS was available and UKB 
summary statistics otherwise). We quantified the degree of pleiotropy per genetic 
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variant by aggregating and counting the number of genome-wide significant 
associations across 220 traits. We then annotated loci from the largest number of 
associations (nassociations ≥ 9 in BBJ and ≥18 in Europeans) in Fig. 2a,b.

Next, we assessed the recent natural selection signature within the pleiotropic 
loci separately for Japanese and for Europeans. To do this, we first defined the 
pleiotropic loci by identifying genetic variants that harbored a larger number of 
significant associations than a given threshold. We varied this threshold from 
1 to 40. Then, at each threshold, we calculated the sum of SDS χ2 values within 
the pleiotropic loci, and compared this with the χ2 distribution under the null 
hypothesis with a degree of freedom equal to the number of variants in the loci. We 
thus estimated the SDS enrichment within the pleiotropic loci defined by a given 
threshold as fold change and P value. The SDS values in UK10K were provided by 
the web resource at Pritchard’s lab (http://web.stanford.edu/group/pritchardlab/
UK10K-SDS-values.zip)27 and provided by the authors on the Japanese 
population28. The raw SDS values were normalized according to the derived allele 
frequency as described previously27.

Fine-mapping of the MHC region. We performed the fine-mapping of MHC 
associations in BBJ and UKB by HLA imputation54. In BBJ, we imputed classical 
HLA alleles and corresponding amino acid sequences using the reference 
panel recently constructed from 1,120 individuals of Japanese ancestry by 
the combination of SNP2HLA software, Eagle and minimac3, as described 
previously55. We applied postimputation quality control to keep the imputed 
variants with MAF ≥ 0.5% and Rsq > 0.7. For each marker dosage that indicated 
the presence or absence of an investigated HLA allele or an amino acid sequence, 
we performed an association test with the disease endpoints and biomarkers. We 
assumed additive effects of the allele dosages on phenotypes in the regression 
models. We included the same covariates as in the GWAS. In UKB, we imputed 
classical HLA alleles and corresponding amino acid sequences using the 
T1DGC reference panel of European ancestry (n = 5,225)56. We applied the same 
postimputation quality control and performed the association tests as in BBJ.

ABO blood group genotyping and analysis. We extracted the best guess genotype 
of three variants (rs8176747, rs8176746 and rs8176719 at 9q34.2)32, and inferred 
blood group status of individuals in BBJ and UKB. We then performed logistic 
regression for 159 disease endpoints and linear regression for 38 biomarkers to 
test the association with the blood groups. Blood group-specific ORs or effect sizes 
(beta) were calculated by making four different groupings as A versus B/AB/O, B 
versus A/AB/O, AB versus A/B/O and O versus A/AB/B, as described elsewhere57. 
We described the traits with association P < 5 × 10−8 in at least one of the blood 
groups in either of the cohorts in Fig. 3c,d.

Heritability and genetic correlation estimation. We performed LDSC by using 
LDSC software (v.1.0.1; https://github.com/bulik/ldsc) for GWASs of BBJ and 
Europeans to estimate SNP-based heritability, potential bias and pairwise genetic 
correlations. Variants in the MHC region (chromosome 6: 25–34 Mb) were 
excluded. We also excluded variants with χ2 > 80, as recommended previously58. 
For heritability estimation, we used the baselineLD model (v.2.2), which included 
97 annotations that correct for bias in heritability estimates59. We note that we 
did not report liability-scale heritability, since the population prevalence of 
159 diseases in each country was not always available, and the main objective 
of this analysis was an assessment of bias in GWAS, rather than the accurate 
estimation of heritability. We calculated the heritability Z-score to assess the 
reliability of heritability estimation, and reported the LDSC results with Z-score 
for h2

SNP > 2 (Supplementary Table 3). For calculating pairwise genetic correlation, 
we again restricted the target GWASs to those whose Z-score for h2

SNP is >2, as 
recommended previously58. In total, we calculated genetic correlation for 106 
GWASs in BBJ and 148 European GWASs, which resulted in 5,565 and 10,878 trait 
pairs, respectively.

To illustrate trait-by-trait genetic correlation, we hierarchically clustered the 
rg values with hclust and colored them as a heatmap (Extended Data Fig. 6). To 
adopt reliable genetic correlations, we restricted the rg values that had Pcor < 0.05. 
Otherwise, the rg values were replaced with 0. We then defined the tightly clustered 
trait domains by greedily searching for the phenotype blocks with pairwise rg > 0.7 
within 70% of rg values in the block from the top left of the clustered correlation 
matrix. We manually annotated each trait domain by extracting the characteristics 
of traits constituting the domain (Extended Data Fig. 6).

Deconvolution of a matrix of summary statistics by TSVD. We performed the 
TSVD on the matrix of genotype–phenotype association Z-scores as described 
previously as DeGAs framework8. In this study, we first focused on 159 disease 
endpoint GWASs in BBJ and European GWASs (that is, 318 in total) to derive 
latent components through TSVD. On constructing a Z-score matrix, we 
conducted variant-level quality control. We removed variants located in the MHC 
region (chromosome 6: 25–34 Mb), and replaced unreliable Z-score estimates with 
zero when one of the following conditions was satisfied as in Tanigawa et al.8: (1) 
P value of marginal association ≥ 0.001 or (2) standard error of beta value ≥ 0.2. 
Considering that rows and columns with all zeros do not contribute to matrix 
decomposition, we excluded variants that had all zero Z-scores across 159 traits in 

either BBJ or Europeans. We then performed LD pruning using PLINK software60 
(‘--indep-pairwise 50 5 0.1’) with an LD reference of 5,000 randomly selected 
individuals of white British UKB participants to select LD-independent variant 
sets, which resulted in a total of 22,980 variants. Thus, we made a Z-score matrix 
(= W) with a size of 318 (N: 159 diseases × 2 populations) × 22,980 (M: variants). 
With a predetermined number of K, TSVD decomposed W into a product of 
three matrices: U, S and VT: W = USVT. U = (ui,k)i,k is an orthonormal matrix of 
size N × K whose columns are phenotype singular vectors, S is a diagonal matrix 
of size K × K whose elements are singular values and V = (vj,k)j,k is an orthonormal 
matrix of size M × K whose columns are variant singular vectors. Here we set K 
as 40, which together explained 36.7% of the total variance of the original matrix. 
This value was determined by experimenting with different values from 20 to 100 
and selecting the informative and sufficient threshold. We used the TruncatedSVD 
module in the sklearn.decomposition library of python for performing TSVD.

To interpret and visualize the results of TSVD, we calculated the squared cosine 
scores. The phenotype squared cosine score, cos2phei (k), is a metric to quantify the 
relative importance of the kth latent component for a given phenotype i, and is 
defined as follows:

cos2
phe

i (k) =

(

fpi,k
)2

∑

k′

(

fpi,k′
)2

where

Fp = US =
(

fpi,k
)

i,k

Annotation of the components by using GREAT and identification of relevant 
cell types. We calculated the variant contribution score, which is a metric to 
quantify the contribution of a given variant j to a given component k, as follows:

contrvark (j) = (vi,k)2

For each component, we can thus rank the variants based on their contribution to 
the component and calculate the cumulative contribution score. We defined a set of 
contributing variants to a given component to include top-ranked variants that had 
high contribution scores until the cumulative contribution score to the component 
exceeded 0.5. For these variant sets contributing to the latent components, we 
performed the GREAT (v.4.0.4) binomial genomic region enrichment analysis39 
based on the size of the regulatory domain of genes and quantified the significance 
of enrichment in terms of binomial fold enrichment and binomial P value to 
biologically interpret these components. We used the human phenotype and 
mouse genome informatics phenotype ontology, which contains manually curated 
knowledge about the hierarchical structure of phenotypes and genotype–phenotype 
mapping of human and mouse, respectively. The enriched annotation with a false 
discovery rate < 0.05 is considered significant and displayed in the figures.

For a gene set associated with the contributing variants with a given component 
(P < 0.05), we sought to identify relevant cell types by integrating two datasets: 
(1) ENCODE3 DHS regulatory patterns across human tissues from non-negative 
matrix factorization40 and (2) specifically expressed genes defined from GTEx 
data41. In brief, a vocabulary (that is, DHS patterns) for regulatory patterns was 
defined from the non-negative matrix factorization of 3 million DHSs × 733 human 
biosamples encompassing 438 cell and tissue types. Then, for each regulatory 
vocabulary, GENCODE genes were assigned based on their overlying DHSs. The 
gene labeling result was downloaded from the journal website40. We also defined 
genes specifically expressed in 53 tissues from GTEx version 7 data, based on the 
top 5% of the t-statistics in each tissue as described elsewhere61. Then, for (1) each 
regulatory vocabulary and (2) each tissue, we performed Fisher’s exact tests to 
investigate whether the genes associated with a given component are significantly 
enriched in the defined gene set.

Projection of biomarker and metabolite GWASs into the component space. 
To further help interpret the latent components derived from disease-based 
TSVD, we projected the Z-score matrix of biomarker GWASs and metabolite 
GWASs into the component space. Briefly, we constructed the Z-score matrices 
(Wʹ) of 38 biomarkers of BBJ and European GWASs (that is, 76 rows) and 248 
known metabolites of independent previous GWASs in the European population 
(http://metabolomics.helmholtz-muenchen.de/gwas/index.php?task=download) 
(ref. 42) × 22,980 variants (Supplementary Table 11). Then, using the V from the 
disease-based TSVD, we calculated the phenotype contribution as follows:

Fprojectionp = W′V =
(

fprojectioni,k

)

i,k

We note that for metabolite GWASs, since the GWASs were imputed with the 
HapMap reference panel, we imputed Z-scores of missing variants using ssimp 
software62 (v.0.5.5 –ref 1KG/EUR –impute.maf 0.01), and otherwise we set the 
missing Z-scores to zero.
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Projection of metabolite GWASs in Japanese into the component space. To 
investigate whether the projection analysis is applicable to independent datasets, 
we conducted metabolite GWASs in ToMMo. ToMMo is a community-based 
biobank that combines medical and genome information from the participants 
in the Tohoku region of Japan63. Detailed cohort description is presented in the 
Supplementary Notes. In this study, we analyzed a total of 206 metabolites64 by 
proton nuclear magnetic resonance (NMR) or liquid chromatography–mass 
spectrometry (LC-MS) (Supplementary Table 12). For sample quality control, 
we excluded samples meeting any of the following criteria: (1) genotype call 
rate < 95%; (2) one individual from each pair of those in close genetic relation 
(PI_HAT calculated by PLINK60 ≥ 0.1875) based on call rate; and (3) outliers 
from Japanese ancestry clustering based on the PCA with samples of 1000 
Genomes Project Phase 3 data. For phenotype quality control, we excluded 
(1) the measurements in pregnant women, (2) measurements that took time 
from sampling to biobanking ≥2 d and (3) phenotypic outliers defined as 
log-transformed measurements laying more than 4 s.d. from the mean for each 
metabolite. The participants were genotyped with a custom SNP array for the 
Japanese population (that is, Japonica Array v.2). For genotype quality control, 
we excluded variants meeting any of the following criteria: (1) call rate < 98%, 
(2) P value for Hardy–Weinberg equilibrium < 1.0 × 10−6 and (3) MAF < 0.01. 
The quality-controlled genotype data were prephased by using SHAPEIT2 
software (r837), and imputed by using IMPUTE4 software (r300.3) with a 
combined reference panel of 1000 Genomes Project Phase 3 (n = 2,504) and 
population-specific WGS data (that is, 3.5KJPNv2; n = 3,552)64. After imputation, 
we excluded variants with imputation INFO < 0.7.

For GWASs, we obtained the residuals from a linear regression model of each 
of the log-transformed metabolites adjusted for age, age2, sex, time period from 
sampling to biobanking and top 20 genotype principal components. The residuals 
were then transformed by rank-based inverse normalization. Association analysis 
of imputed genotype dosage with the normalized residual of each metabolite was 
performed using PLINK2 software. We constructed the Z-score matrices (Wʹ) of 
the Japanese metabolites GWASs (that is, 206 rows) × 22,980 variants, in which we 
applied the same quality control to the Z-scores and set the missing Z-scores to 
zero again. We then performed the projection as described above.

Drug target enrichment analysis. To investigate whether disease-associated genes 
are systematically enriched in the targets of the approved drugs for the treatment 
of those diseases, the Genome for REPositioning drugs (GREP)49 was used. A list 
of genes closest to the lead variants from GWAS, which was concatenated based 
on the alphabetical category of ICD10 (A to N), was used as an input gene set to 
test the enrichment for the target genes of approved drugs for diseases of a given 
ICD10 category.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genotype data of BBJ used in this study are available from the Japanese 
Genotype-phenotype Archive (JGA) with accession codes JGAS000114/J
GAD000123 and JGAS000114/JGAD000220, which can be accessed through 
application at https://humandbs.biosciencedbc.jp/en/hum0014-latest. The 
UKB analysis was conducted via application number 47821. The genotype and 
phenotype data can be accessed through application at https://www.ukbiobank.
ac.uk. This study used the FinnGen release 3 data. Summary results can be accessed 
through application at https://www.finngen.fi/en/access_results. We provide 
downloadable full GWAS summary statistics with an interactive visualization of 
Manhattan, LocusZoom and PheWAS plots at our PheWeb.jp website (https://
pheweb.jp/). The summary statistics of GWASs in this study (BioBank Japan, 
European and cross-population meta-analyses) are also deposited at the National 
Bioscience Database Center (NBDC) Human Database (https://humandbs.
biosciencedbc.jp/en/) with the accession code hum0197, and the GWAS Catalog 
(https://www.ebi.ac.uk/gwas/) with the study accession IDs from GCST90018563 
(https://www.ebi.ac.uk/gwas/studies/GCST90018563) to GCST90019002 (https://
www.ebi.ac.uk/gwas/studies/GCST90019002) (full IDs are described in the 
Supplementary Notes). The summary statistics of metabolite GWASs in the 
Japanese population (Tohoku Medical Megabank Organization) which we used 
for decomposition–projection analysis are available at https://jmorp.megabank.
tohoku.ac.jp/202102/gwas/TGA000005. We used gnomAD database (https://
gnomad.broadinstitute.org/) to refer to the allele frequencies.

Code availability
We used publicly available software for the analyses. The software used is listed and 
described in the Methods section of our manuscript.
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biology underlying disease classifications. 

TSVD

Latent
Components

Projection

biological pathways
and 

cell types

GTEx data
ENCODE3

GWAS

Metabolite GWAS (n = 7K)

Atlas of genetic association
 (ntotal ~ 628K)

chr6
MHC locus

DPB1
DPA1

DQA1

DQB1

DRB1
DRB3 B C A

Extended Data Fig. 1 | Overview of this study. We performed 220 deep-phenotype GWASs in BioBank Japan, including 108 novel GWASs ever conducted 
in East Asian population. We performed trans-biobank meta-analyses with UK Biobank and FinnGen (ntotal = 628,000), resulting in discovery of 5,343 novel 
loci. All summary statistics are openly shared through pheweb.jp web portal. As downstream analyses, we performed (i) cross-population comparison 
of pleiotropy and genetic correlation, (ii) comprehensive HLA fine-mapping, and (iii) statistical decomposition of a matrix of summary statistics to gain 
insights into biology underlying current disease classifications, by incorporating functional genomics, metabolomics, and biomarker data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Locus plots for representative loci. (a) Regional association plots for Pulmonary Tuberculosis (PTB) in BBJ are shown. The lead 
variant (rs140780894) is colored in pink, and colors of other dots indicate linkage disequilibrium measure r2 with the lead variant. (b) Regional association 
plots for cholelithiasis in BBJ are shown. The lead variant (rs715) is colored in pink, and colors of other dots indicate linkage disequilibrium measure r2 with 
the lead variant. (c) Regional association plots for gastric diseases in BBJ at the PSCA locus in gastric ulcer, gastric cancer, and gastric polyp are shown. 
Rs2976397, which was a lead variant in gastric ulcer, is colored in pink, and colors of other dots indicate linkage disequilibrium measure r2 with the lead 
variant. (d) Regional association plots at the FUT3 locus in gall bladder polyp and cholelithiasis in BBJ are shown. Rs28362459, which was a lead variant 
in gall bladder polyp, is colored in pink, and colors of other dots indicate linkage disequilibrium measure r2 with the lead variant. (e) Regional association 
plots for urticaria in BBJ are shown. The lead variant (rs56043070) is colored in pink, and colors of other dots indicate linkage disequilibrium measure r2 
with the lead variant. (f) Regional association plots for salicylic acids prescription in BBJ are shown. The lead variant (rs151193009) is colored in pink, and 
colors of other dots indicate linkage disequilibrium measure r2 with the lead variant.
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Extended Data Fig. 3 | The effect size correlation between BBJ GWAS and European GWAS. The marginal effect sizes of genome-wide significant 
variants across traits in BBJ are compared with those in European GWAS. Each plot represents a variant, and is colored based on the significance in 
European GWAS as shown in the left top legend. Pearson’s correlation r and P value (two-sided) between BBJ GWAS and European GWAS are also shown 
in the legend.
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a  Phenotypic correlation matrix b  Silhouette score for clustering

Extended Data Fig. 4 | Phenotypic correlation across 220 phenotypes in BBJ. a. Heatmap of pair-wise phenotypic correlation matrix. The color of the cells 
indicates the value of correlation r as shown in a color scale at the bottom. The traits (rows and columns) were hierarchically clustered by hclust library in R. 
b. Silhouette score for clustering of closely related phenotypes with different number of clusters (Supplementary Notes).
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Extended Data Fig. 5 | The degree of pleiotropy in BBJ after accounting for phenotypic or genetic correlations. The Manhattan-like plots show the 
number of significant associations (P < 5.0×10−8) at each tested genetic variant in Japanese. a. For all traits (ntrait = 220; as shown in Fig. 2a). b. After 
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a  Japanese

b  Europeans
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cardiovascular- acting medications

coronary artery disease

type 2 diabetes- related phenotypes

allergy- related phenotypes

others

blood-cell phenotypes

Extended Data Fig. 6 | Genetic correlation matrices across populations. The matrices describe pairwise genetic correlation rg in Japanese GWAS  
(a; n = 5,565) and in European GWAS (b; n = 10,878), which was estimated by bivariate LD score regression. A color of the cells indicates the value of rg 
as shown in a color scale at the bottom. The traits (rows and columns) were hierarchically clustered by hclust library in R, and trait domains are displayed 
as colored boxes (see Methods).
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Extended Data Fig. 7 | Network representation of the TSVD analysis. Two-dimensional illustration of interconnection among 159 diseases and 40 latent 
components. Plots in blue indicate each trait’s statistics, and plots in pink indicate the latent components derived by TSVD. White lines represent the 
contribution of each phenotype in each component. The width of the lines indicates the strength of the contribution based on the squared cosine score.
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Extended Data Fig. 8 | Heatmap representation of squared cosine scores of diseases to components. The components (rows) are shown from 1 (top) to 
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Extended Data Fig. 9 | Enrichment analyses of genes explaining each component with tissue specificity. A heatmap representation of the enrichment 
analyses of genes explaining each component with tissue-specific genes defined by GTEx expression profile (a) and regulatory vocabulary from ENCODE3 
data (b). Each cell is colored based on Penrichment from Fisher’s exact tests to assess the enrichment of the genes comprising each component within each 
tissue-specific gene set as shown in a color scale at the bottom right.
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Extended Data Fig. 10 | Genetic variants analyzed in the three cohorts. The Venn diagram showing the number of genetic variants analyzed in this study 
in each of the three cohorts (BBJ, UKB, and FinnGen) and overlapping variants across the cohorts.
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JGAS000114/JGAD000220 which can be accessed through application at https://humandbs.biosciencedbc.jp/en/hum0014-latest. The UKB analysis was conducted 

via application number 47821. The genotype and phenotype data can be accessed through application at https://www.ukbiobank.ac.uk.This study used the FinnGen 

release 3 data. Summary results can be accessed through application at https://www.finngen.fi/en/access_results. All summary statistics of 220 GWASs (BioBank 

Japan, European, and cross-population meta-analyses) are deposited at the National Bioscience Database Center (NBDC) Human Database with the accession code 

hum0197. We also provide an interactive visualization of Manhattan, Locus Zoom, and PheWAS plots with downloadable GWAS summary statistics at our 
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PheWeb.jp website [https://pheweb.jp/]. The summary statistics of metabolite GWASs in the Japanese population (Tohoku Medical Megabank Organization) are 

being prepared as a different project and in manuscript preparation (Koshiba et al.). The previous version of the partial statistics is publicly available at https://

jmorp.megabank.tohoku.ac.jp/202008/gwas/TGA000003.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All sample size in GWASs in this study is summarized in Supplementary Table 2 and 5. We did not perform sample size calculation but included 

the maximum number of individuals in each cohort who passed the QC threshold. This strategy maximizes the statistical power in each cohort 

and we also performed the cross-population meta-analysis to further increase the power.

Data exclusions All samples were selected based on quality-control criteria in each cohort, which is summarized in Method section.

Replication We compared all signal identified in BBJ GWASs with corresponding but independent GWASs in UK Biobank and FinnGen. We confirmed high 

replicability (directional concordance of effects= 94.2%, P<1E-325 in sign test).

Randomization We did not need to use randomization in this study because this is a genotype-phenotype association study. All the samples with available 

accessibility to genotype and phenotype data were included in the analysis.

Blinding We did not apply blinding of the samples because this is a genotype-phenotype association study and no intervention was conducted in our 

study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics BBJ is a prospective biobank that collaboratively collected DNA and serum samples from 12 medical institutions in Japan and 

recruited approximately 200,000 participants, mainly of Japanese ancestry (Supplementary Note). Mean age of participants 

at recruitment was 63.0 years old, and 46.3% were female. All study participants had been diagnosed with one or more of 47 

target diseases by physicians at the cooperating hospitals. We previously conducted GWASs of 42 out of the 47 target 

diseases. The UK Biobank project is a population-based prospective cohort that recruited approximately 500,000 people 

across the United Kingdom. Mean age of participants at recruitment was 56.8 years old, and 53.8% were female. FinnGen is a 

public–private partnership project combining genotype data from Finnish biobanks and digital health record data from 

Finnish health registries. Mean age of participants at DNA sample collection was 51.8 years old, and 56.3% were female.

Recruitment All study participants in BBJ had been diagnosed with one or more of 47 target diseases by physicians at the cooperating 

hospitals. Participants were registered to the cohort from June 2003 to March 2008, and their clinical information was 

collected annually via interviews and medical record reviews until 2013. The UK Biobank project recruited approximately 

500,000 people aged between 40–69 years from 2006 to 2010 from across the United Kingdom. FinnGen is a public–private 

partnership project. Six regional and three country-wide Finnish biobanks participate in FinnGen. Additionally, data from 

previously established population and disease-based cohorts are utilized. Participants’ health outcomes are followed up by 
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linking to the national health registries (1969–2016), which collect information from birth to death.  

Each biobank has specific population context, and we also note that the BBJ is a hospital-based cohort, UKB is a population-

based cohort, and FinnGen is a mixture of them. The coherent results across three biobanks mitigated concerns over 

potential biases.

Ethics oversight All the participants provided written informed consent approved from ethics committees of the Institute of Medical Sciences, 

the University of Tokyo and RIKEN Center for Integrative Medical Sciences.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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