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SUMMARY

The bacteria Yersinia pestis is the etiological agent
of plague and has caused human pandemics with
millions of deaths in historic times. How and
when it originated remains contentious. Here, we
report the oldest direct evidence of Yersinia pestis
identified by ancient DNA in human teeth from Asia
and Europe dating from 2,800 to 5,000 years ago.
By sequencing the genomes, we find that these
ancient plague strains are basal to all known
Yersinia pestis. We find the origins of the Yersinia
pestis lineage to be at least two times older than
previous estimates. We also identify a temporal
sequence of genetic changes that lead to increased
virulence and the emergence of the bubonic
plague. Our results show that plague infection
was endemic in the human populations of Eurasia
at least 3,000 years before any historical recordings
of pandemics.

INTRODUCTION

Plague is caused by the bacteria Yersinia pestis and is being
directly transmitted through human-to-human contact (pneu-
monic plague) or via fleas as a common vector (bubonic or septi-
cemic plague) (Treille and Yersin, 1894). Three historic human
plaguepandemicshavebeendocumented: (1) theFirstPandemic,
which started with the Plague of Justinian (541–544 AD), but
continued intermittently until!750 AD; (2) the Second Pandemic,
which began with the Black Death in Europe (1347–1351 AD) and
included successivewaves, such as theGreatPlague (1665–1666
AD), until the 18th century; (3) the Third Pandemic, which emerged
inChina in the1850sanderupted there inamajor epidemic in1894
before spreading across the world as a series of epidemics until
the middle of the 20th century (Bos et al., 2011; Cui et al., 2013;
Drancourt et al., 1998; Harbeck et al., 2013; Parkhill et al., 2001;
Perry andFetherston, 1997;Wagneretal., 2014).Earlieroutbreaks
such as the Plague of Athens (430–427 BC) and the Antonine
Plague (165–180 AD) may also have occurred, but there is no
direct evidence that allows confident attribution toY. pestis (Dran-
court and Raoult, 2002; McNeill, 1976).
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The consequences of the plague pandemics have been well-
documented and the demographic impacts were dramatic (Little
et al., 2007). The Black Death alone is estimated to have killed
30%–50% of the European population. Economic and political
collapses have also been in part attributed to the devastating
effects of the plague. The Plague of Justinian is thought to
have played a major role in weakening the Byzantine Empire,
and the earlier putative plagues have been associated with the
decline of Classical Greece and likely undermined the strength
of the Roman army.

Molecular clock estimates have suggested that Y. pestis diver-
sified from themore prevalent and environmental stress-tolerant,
but lesspathogenic, enteric bacteriumY.pseudotuberculosisbe-
tween 2,600 and 28,000 years ago (Achtman et al., 1999, 2004;
Cui et al., 2013; Wagner et al., 2014). However, humans may
potentially have been exposed to Y. pestis for much longer than
the historical record suggests, though direct molecular evidence
for Y. pestis has not been obtained from skeletal material older
than 1,500 years (Bos et al., 2011; Wagner et al., 2014). The
most basal strains of Y. pestis (0.PE7 clade) recorded to date
were isolated from the Qinghai-Tibet Plateau in China in 1961–
1962 (Cui et al., 2013).

We investigated the origin of Y. pestis by sequencing ancient
bacterial genomes from the teeth of Bronze Age humans across
Europe and Asia. Our findings suggest that the virulent, flea-
borne Y. pestis strain that caused the historic bubonic plague
pandemics evolved from a less pathogenic Y. pestis lineage in-
fecting human populations long before recorded evidence of
plague outbreaks.

RESULTS

Identification of Yersinia pestis in Bronze Age Eurasian
Individuals
We screened c. 89 billion raw DNA sequence reads obtained
from teeth of 101 Bronze Age individuals from Europe and Asia
(Allentoft et al., 2015) and found that seven individuals carried se-
quences resembling Y. pestis (Figure 1, Table S1, Supplemental
Experimental Procedures). Further sequencing allowed us to

A B Figure 1. Archaeological Sites of Bronze
Age Yersinia pestis
(A) Map of Eurasia indicating the position, radio-

carbon dated ages and associated cultures of the

samples in which Y. pestis were identified. Dates

are given as 95% confidence interval calendar BC

years. IA: Iron Age.

(B) Burial four from Bulanovo site. Picture by

Mikhail V. Khalyapin. See also Table S1.

assemble the Y. pestis genomes to an
average depth of 0.14–29.5X, with 12%–
95% of the positions in the genome
covered at least once (Table 1, Table S2,
S3, and S4). We also recovered the
sequences of the three plasmids pCD1,
pMT1, and pPCP1 (0.12 to 50.3X in
average depth) the latter two of which

are crucial for distinguishing Y. pestis from its highly similar
ancestor Y. pseudotuberculosis (Table 1, Figure 2, Table S3)
(Bercovier et al., 1980; Chain et al., 2004; Parkhill et al., 2001).
The host individuals from which Y. pestis was recovered belong
to Eurasian Late Neolithic and Bronze Age cultures (Allentoft
et al., 2015), represented by the Afanasievo culture in Altai, Sibe-
ria (2782 cal BC, 2794 cal BC, n = 2), the Corded Ware culture in
Estonia (2462 cal BC, n = 1), the Sintashta culture in Russia (2163
cal BC, n = 1), the Unetice culture in Poland (2029 cal BC, n = 1),
the Andronovo culture in Altai, Siberia (1686 cal BC, n = 1), and
an early Iron Age individual from Armenia (951 cal BC, n = 1)
(Table S1).

Authentication of Yersinia pestis Ancient DNA
Besides applying standard precautions for working with ancient
DNA (Willerslev and Cooper, 2005), the authenticity of our
findings are supported by the following observations: (1) The
Y. pestis sequences were identified in significant amounts in
shotgun data from eight of 101 samples, showing that this
finding is not due to a ubiquitous contaminant in our lab or in
the reagents. Indeed, further analysis showed that one of these
eight was most likely not Y. pestis. We also sequenced all nega-
tive DNA extraction controls and found no signs of Y. pestis DNA
in these (Table S3). (2) Consistent with an ancient origin, the
Y. pestis reads were highly fragmented, with average read
lengths of 43–65 bp (Table S3) and also displayed clear signs of
C-T deamination damage at the 50 termini typical of ancient
DNA (Figure 3, Figure S1). Because the plasmids are central for
discriminating between Y. pestis and Y. pseudotuberculosis,
we tested separately for DNA damage patterns for the chromo-
some and for each of the plasmids. For the seven samples, we
observe similar patterns of DNA damage for chromosome and
plasmid sequences (Figure 3, Figure S1). (3) We observe corre-
lated DNA degradation patterns when comparing DNA degra-
dation in the Y. pestis sequences and the human sequences
from the host individual. Given that DNA decay can be described
as a rate process (Allentoft et al., 2012), this suggests that the
DNA molecules of the pathogen and the human host have a
similar age (Figure 3, Figure S1, Table S3 and Supplemental
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Experimental Procedures). (4) Because of the high sequence
similarity between Y. pestis and Y. pseudotuberculosis, we
mapped all reads both to the Y. pestis CO92 and to the
Y. pseudotuberculosis IP32953 reference genomes (Chain
et al., 2004). Consistent with being Y. pestis, the seven investi-
gated samples displayed more reads matching perfectly (edit
distance = 0) toward Y. pestis (Figure 3, Figure S2). One sample
(RISE392) was most likely not Y. pestis based on this criterion.
(5) A naive Bayesian classifier trained on known genomes pre-
dicts the seven samples tobeY. pestiswith 100%posterior prob-
ability, while RISE392 is predicted to have 0% probability of
being Y. pestis (Figure S2, Table S3). (6) If the DNA was from
other organisms than Y. pestis, we would expect the reads to
be more frequently associated with either highly conserved or
low-complexity regions. However, we find the reads to be distrib-
uted across the entire genome (Figure S2), and comparison of
actual coverage versus the coverage that would be expected
from read length distributions and mappability of the reference
sequencesarealso inagreement for thesevensamples (Figure3).
(7) In a maximum likelihood phylogeny, the recovered Y. pestis
genomic sequences of RISE505 and RISE509 are clearly within
the Y. pestis clade and basal to all contemporary Y. pestis strains
(Figure 4) (see below).

The Phylogenetic Position of the Bronze Age Yersinia
pestis Strains
To determine the phylogenetic positions of the two high
coverage ancient Y. pestis strains, RISE505 (Andronovo culture
1686 cal BC, 8.7X) and RISE509 (Afanasievo culture, 2746 cal
BC, 29.7X), we mapped the reads, together with reads from
strains of Yersinia similis (n = 5), Y. pseudotuberculosis (n =
25), and Y. pestis (n = 139), to the Y. pseudotuberculosis refer-
ence genome (IP32953). Only high confidence positions were
extracted. To assess whether the individuals were infected
with multiple strains of Y. pestis we investigated the genotype
heterozygosity levels of the ancient genomes and found no
indications of mixed infection (Figure S3). There was no decay
in Linkage Disequilibrium (LD) across the chromosome (Fig-
ure S3), indicating no detectable recombination among strains.
We therefore used RAxML (Stamatakis, 2014) to construct a
Maximum Likelihood phylogeny from a supermatrix concate-
nated from 3,141 genes and a total of 3.14 Mbp (Figure 4). This
contrasts with earlier phylogenies (Bos et al., 2011; Cui et al.,

2013; Morelli et al., 2010;Wagner et al., 2014), which were based
on less than 2,300 nucleotides that were ascertained to be vari-
able in Y. pestis, likely leading to lower statistical accuracy than
with whole-genome analyses. Furthermore, the use of SNPs
ascertained to be variable in Y. pestis would downwardly bias
estimates of branch lengths in Y. pseudotuberculosis and lead
to underestimates of the Y. pestis versus Y pseudotuberculosis
divergence time, as seen in the branch length of the Y. pestis
clade to Y. pseudotuberculosis (Figure S3). The topology of our
whole genome tree shows Y. pestis as a monophyletic group
within Y. pseudotuberculosis with RISE505 and RISE509 (Fig-
ure 4A, black arrow, Figure S4) clustered together within the
Y. pestis clade. The Y. pestis sub-tree topology (Figure 4B, Fig-
ure S4) is similar to that reported previously (Bos et al., 2011;
Cui et al., 2013; Morelli et al., 2010; Wagner et al., 2014), but
with the two ancient strains (RISE505 and RISE509) falling basal
to all other known strains of Y. pestis (100% bootstrap support).

Determination of Yersinia pestis Divergence Dates
To determine the dates for the most recent common ancestor
(MRCA) of Y. pestis and Y. pseudotuberculosis, and for all known
Y. pestis strains, we used a Bayesian Markov Chain Monte Carlo
approach implemented in BEAST2 (Bouckaert et al., 2014) on a
subset of the supermatrix. We estimated the MRCA of Y. pestis
and Y. pseudotuberculosis to be 54,735 years ago (95% HPD
[highest posterior density] interval: 34,659–78,803 years ago)
(Figure 4C, Figure S5, Table S5), which is about twice as old
compared to previous estimates of 2,600–28,000 years ago
(Achtman et al., 1999, 2004; Cui et al., 2013; Wagner et al.,
2014). Additionally, we estimated the age of the MRCA of all
known Y. pestis to 5,783 years ago (95% HPD interval: 5,021–
7,022 years ago). This is also significantly older and with a
much narrower confidence interval than previous findings of
3,337 years ago (1,505–6,409 years ago) (Cui et al., 2013).

Bronze Age Yersinia pestis Strains Lacking Yersinia
Murine Toxin
For the high-depth ancient Y. pestis genomes, we investigated
the presence of 55 genes that have been associated with the
virulence of Y. pestis (Figure 5A, Table S6).We found all virulence
genes to be present, except the Yersinia murine toxin (ymt) gene
that is located at 74.4–76.2 kb on the pMT1 plasmid (Figure 2C,
arrow 1). The ymt gene encodes a phospholipase D that protects

Table 1. Overview of the Y. pestis Containing Samples

Sample Country Site Culture Date (cal BC) CO92 pMT1 pPCP1 pCD1

RISE00 Estonia Sope Corded Ware 2575–2349 0.39 0.36 1.40 0.66

RISE139 Poland Chociwel Unetice 2135–1923 0.14 0.24 0.76 0.28

RISE386 Russia Bulanovo Sintashta 2280–2047 0.82 0.96 1.12 1.60

RISE397 Armenia Kapan EIA 1048–885 0.25 0.40 6.88 0.50

RISE505 Russia Kytmanovo Andronovo 1746–1626 8.73 9.15 34.09 17.46

RISE509 Russia Afanasievo Gora Afanasievo 2887–2677 29.45 16.96 31.22 50.32

RISE511 Russia Afanasievo Gora Afanasievo 2909–2679 0.20 0.24 1.19 0.60

The dating is direct AMS dating of bones and teeth and is given as 95% confidence interval calendar BC years (details are given in Table S1). The

columns CO92, pMT1, pPCP1 and pCD1 correspond to sequencing depth. Additional information on the archaeological sites and mapping statistics

can be found in the Supplemental Experimental Procedures and Table S1, S2, and S3. EIA: Early Iron Age, AMS: Accelerator Mass Spectrometry.
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Y. pestis inside the flea gut, thus enabling this enteric bacteria
to use an arthropod as vector; it further allows for higher titers
of Y. pestis and higher transmission rates (Hinnebusch, 2005;
Hinnebusch et al., 2002). When investigating all seven samples
for the presence of ymt, we identified a 19 kb region (59–78 kb,
Figure 2C arrow 2–3, Figure 5B) to bemissing except in the youn-
gest sample (RISE397, 951 cal BC) (Figure 5B, Table S7). We find
this region to be present in all other published Y. pestis strains

(modern and ancient), except three strains (5761, 945, and
CA88) that are lacking the pMT1 plasmid completely.
Although larger sample sizes are needed for confirmation, our

data indicate that the ymt gene was not present in Y. pestis
before 1686 cal BC (n = 6), while after 951 cal BC, it is found in
97.8% of the strains (n = 140), suggesting a late and very rapid
spread of ymt. This contrasts with previous studies arguing
that the ymt gene was acquired early in Y. pestis evolution due

A B

C
D

Figure 2. Y. pestis Depth of Coverage Plots
(A–D) Depth of coverage plots for (A) CO92 chromosome, (B) pCD1, (C) pMT1, (D) pPCP1. Outer ring: Mappability (gray), genes (RNA: black, transposon: purple,

positive strand: blue, negative strand: red), RISE505 (blue), RISE509 (blue), Justinian plague (orange), Black Death plague (purple), modern Y. pestis D1982001

(green), Y. pseudotuberculosis IP32881 (red) sample. The modern Y. pestis and Y. pseudotuberculosis samples are included for reference. The histograms show

sequence depth in 1 kb windows for the chromosome and 100 bp windows for the plasmids with a max of 20X depth for each ring. Arrow 1: ymt gene, arrow 2:

transposon at start of missing region on pMT1, arrow 3: transposon at end of missing region on pMT1, arrow 4: pla gene, arrow 5: missing flagellin region on

chromosome. The plots were generated using Circos (Krzywinski et al., 2009). See also Tables S2, S3 and S8.
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to its importance in its life cycle (Carniel, 2003; Hinnebusch,
2005; Hinnebusch et al., 2002; Sun et al., 2014). Interestingly,
we identified two transposase elements flanking the missing
19 kb region, confirming that the ymt gene was acquired through
horizontal gene transfer, as previously suggested (Lindler et al.,
1998). Moreover, it has recently been shown that the transmis-
sion of Y. pestis by fleas is also dependent on loss of function
mutations in the pde2, pde3, and rcsA genes (Sun et al., 2014).
The RISE509 sample carries the promoter mutation of pde3
and the functional pde2 and rcsA alleles (Figure S6). In combina-
tion with the absence of ymt, these results strongly suggest that
the ancestral Y. pestis bacteria in these early Bronze Age individ-
uals were not transmitted by fleas.

Native Plasminogen Activator Gene Present in Bronze
Age Yersinia pestis
Another hallmark gene of Y. pestis pathogenicity is the plas-
minogen activator gene pla (omptin protein family), located on
the pPCP1 plasmid (6.6–7.6 kb). The gene facilitates deep tissue
invasion and is essential for development of both bubonic and
pneumonic plague (Sebbane et al., 2006; Sodeinde et al.,
1992; Zimbler et al., 2015). We identify the gene in six of the
seven genomes, but not in RISE139, the sample with the lowest
overall depth of coverage (0.75X on pPCP1) (Figure 2D, arrow 4,
Table S6). Recently, it has been proposed that pPCP1 was
acquired after the branching of the 0.PE2 clade (Zimbler et al.,
2015); however, we identified pPCP1 in our samples, including
in the 0.PE7 clade (strains 620024 and CMCC05009), which
diverged prior to the common ancestor of the 0.PE2 lineage (Fig-
ure 4B, Figure 5A). This shows that pPCP1 and pla likely were
present in the most basal Y. pestis (RISE509), suggesting that
the 0.PE2 strains lost the pPCP1 plasmid. Interestingly, three
2.ANT3 strains (5761, CMCC64001, and 735) are also missing
the pla gene, indicating that the loss of pPCP1 occurred more
than once in the evolutionary history of Y. pestis.
Additionally, we investigated whether RISE397, RISE505, and

RISE509 had the isoleucine to threonine mutation at amino acid
259 in the Pla protein. This mutation has been shown to be
essential for developing bubonic, but not pneumonic, plague
(Zimbler et al., 2015).We found that these samples, in agreement
with their basal phylogenetic position, carry the ancestral isoleu-
cine residue. However, we also identified a valine to isoleucine
mutation at residue 31 for RISE505 (1686 cal BC) and RISE509
(2746 cal BC). This mutation was not found in any of the other
140 Y. pestis strains, but was present in other omptin proteins,
such as Escherichia coli and Citrobacter koseri, and very likely
represents the ancestral Y. pestis state. The youngest of the
samples, RISE397 (951 cal BC) carries the derived isoleucine
residue, showing that this mutation, similar to the acquisition of
ymt, was only observed after 1686 cal BC.
An alternative explanation to the acquisition of ymt and the pla

I259T mutation, given the disparate geographical locations of
our samples, could be that the Armenian strain (RISE397, 951
cal BC) containing ymt and the isoleucine residue in pla had a
longer history in the Middle East and experienced an expansion
during the 1st millennium BC. This would have led to its export to
Eurasia and presumably the extinction of the other more ances-
tral and less virulent Y. pestis strains.

Different Region 4 Present in the Ancestral Yersinia
pestis
Besides the 55 pathogenicity genes, we also investigated the
presence of different region 4 (DFR4) that contains several genes
with potential role in Y. pestis virulence (Radnedge et al., 2002).
This region was reported as present in the Plague of Justinian
and Black Death strains, having been lost in the CO92 reference
genome (from the Third Pandemic) (Chain et al., 2004; Wagner
et al., 2014). Consistent with the ancestral position of our sam-
ples, we find evidence that the region is present in all of our seven
samples (Figure S6).

Yersinia pestis flagellar Frameshift Mutation Absent in
Bronze Age Strains
Another important feature of Y. pestis is the ability to evade the
mammalian immune system. Flagellin is a potent initiator of the
mammalian innate immune system (Hayashi et al., 2001).
Y. pseudotuberculosis is known to downregulate expression
of flagellar systems in a temperature-dependent manner, and
none of the known Y. pestis strains express flagellin due to a
frameshift mutation in the flhD regulatory gene (Minnich and
Rohde, 2007). However, we do not find this mutation in either
RISE505 or RISE509, suggesting that they have fully functional
flhD genes and that the loss of function occurred after 2746 cal
BC. Interestingly, the youngest of these two Y. pestis genomes
(RISE505, 1686 cal BC) shows partial loss of one of the two
flagella systems (758–806 kb), with 39 of 49 genes deleted (Fig-
ure 2A, arrow 5, Table S8). This deletion was not found in any of
the other Y. pestis samples (n = 147). This may point to selective
pressure on ancestral Y. pestis when emerging as a mammalian
pathogen, yielding variably adaptive strains.

DISCUSSION

Our calibrated molecular clock pushes the divergence dates for
the early branching of Y. pestis back to 5,783 years ago, an addi-
tional 2,000 years compared to previous findings (Table S5, Fig-
ure S5) (Cui et al., 2013; Morelli et al., 2010). Furthermore, using
the temporally stamped ancient DNA data, we are able to derive
a time series for the molecular acquisition of the pathogenicity
elements and immune avoidance systems that facilitated the
evolution from a less virulent bacteria with zoonotic potential,
such as Y. pseudotuberculosis, to one of the most deadly bacte-
ria ever encountered by humans (Figure 6).
From our findings, we conclude that the ancestor of extant

Y. pestis strains was present by the end of the 4th millennium
BC and was widely spread across Eurasia from at least the early
3rd millennium BC. The occurrence of plague in the Bronze
Age Eurasian individuals we sampled (7 of 101) indicates that
plague infections were common at least 3,000 years earlier
than recorded historically. However, based on the absence of
crucial virulence genes, unlike the later Y. pestis strains that
were responsible for the first to third pandemics, these ancient
ancestral Y. pestis strains likely did not have the ability to cause
bubonic plague, only pneumonic and septicemic plague. These
early plagues may have been responsible for the suggested
population declines in the late 4th millennium BC and the early
3rd millennium BC (Hinz et al., 2012; Shennan et al., 2013).
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It has recently been demonstrated by ancient genomics
that the Bronze Age in Europe and Asia was characterized
by large-scale population movements, admixture, and re-
placements (Allentoft et al., 2015; Haak et al., 2015), which
accompanied profound and archaeologically well-described
social and economic changes (Anthony, 2007; Kristiansen
and Larsson, 2005). In light of our findings, it is plausible
that plague outbreaks could have facilitated—or have been
facilitated by—these highly dynamic demographic events.
However, our data suggest that Y. pestis did not fully adapt
as a flea-borne mammalian pathogen until the beginning of
the 1st millennium BC, which precipitated the historically re-
corded plagues.

EXPERIMENTAL PROCEDURES

Samples and Archaeological Sites
We initially re-analyzed the data from Allentoft et al. (Allentoft et al., 2015) and

identified Y. pestis DNA sequences in 7 of the 101 individuals. Descriptions of

the archaeological sites are given in Supplemental Experimental Procedures

and Table S1.

Generation of Additional Sequence Data
In order to increase the depth of coverage on the Y. pestis genomes we

sequenced more on these seven DNA extracts. Library construction was con-

ducted as in (Allentoft et al., 2015). Briefly, double stranded and blunt-ended

DNA libraries were prepared using the NEBNext DNA Sample Prep Master

Mix Set 2 (E6070) and Illumina-specific adapters (Meyer and Kircher, 2010).

The libraries were ‘‘shot-gun’’ sequenced in two pools on Illumina HiSeq2500

platforms using 100-bp single-read chemistry. We sequenced 32 lanes gener-

ating a total of 11.2 billion new DNA sequences for this study. Reads for the

seven Y. pestis samples are available from ENA: PRJEB10885. Individual sam-

ple accessions numbers are available in Table S2.

Creation of Database for Identification of Y. pestis Reads
To identify Y. pestis reads in the Bronze Age dataset (Allentoft et al., 2015) we

first created a database of all previously sequenced Y. pestis strains (n = 140),

Y. pseudotuberculosis strains (n = 30), Y. similis strains (n = 5), and a selection

of Y. enterocolitica strains (n = 4) (Supplemental Experimental Procedures and

Table S2). The genomes were either downloaded fromNCBI or downloaded as

reads and de novo assembled using SPAdes-3.5.0 (Bankevich et al., 2012)

with the–careful and–cov-cutoff auto options.

Identification and Assembly of Y. pestis From Ancient Samples
Raw reads were trimmed for adaptor sequences using AdapterRemoval-

1.5.4 (Lindgreen, 2012). Additionally leading and trailing Ns were removed

as well as bases with quality 2 or less. Hereafter, the trimmed reads

with a length of at least 30 nt were mapped using bwa mem (local

alignment) (Li and Durbin, 2009) to the database of Y. pestis,

Y. pseudotuberculosis, Y. similis, and Y. enterocolitica mentioned above.

Reads with a match to any of the sequences in this database were aligned

separately to three different reference genomes: Yersinia pestis CO92

genome including the associated plasmids pCD1, pMT1, pPCP1 (Parkhill

et al., 2001); Yersinia pseudotuberculosis IP32953 including the associ-

ated plasmids (Chain et al., 2004); Yersinia pestis biovar Microtus 91001

and associated plasmids (Zhou et al., 2004). This alignment was performed

using bwa aln (Li and Durbin, 2009) with the seed option disabled for

better sensitivity for ancient data, enforcing global alignment of the

read to the reference genome. Each sequencing run was merged to library

level and duplicates removed using Picard-1.124 (http://broadinstitute.

github.io/picard/), followed by merging to per sample alignment files.

These files were filtered for a mapping quality of 30 to only retain high

quality alignments and the base qualities were re-scaled for DNA

damage using MapDamage 2.0 (Jónsson et al., 2013). We defined

Y. pestis as present in a sample if the mapped depth of the CO92 refer-

ence sequences were higher or equal to 0.1X and if the reads covered

at least 10% of the chromosome and each of the plasmids. The assembly

of Justinian, Black Death, and the modern samples were performed

similarly and is described in detail in the Supplemental Experimental

Procedures.

Coverage, Depth and Mappability Analyses
We calculated the coverage of the individual sample alignments versus

the Y. pestis CO92 reference genome using Bedtools (Quinlan and Hall,

2010) and plotted this using Circos (Krzywinski et al., 2009). For the

chromosome, the coverage was calculated in 1 kbp windows and for the

plasmids in 100 bp windows. Mappability was calculated using GEM-

mappability library using a k-mer size of 50, which is similar to the average

length of the trimmed and mapped Y. pestis reads (average length

43–65 bp). Statistics of the coverage and depth are given in Tables S3

and S4.

DNA Decay Rates
We investigated the molecular degradation signals obtained from the

sequencing data. Based on the negative exponential relationship between

frequency and sequence length, we estimated for each sample the DNA

damage fraction (l, per bond), the average fragment length (1/ l), the DNA

decay rate (k, per bond per year), and the molecular half-lives of 100 bp frag-

ments (Allentoft et al., 2012). We compared these DNA decay estimates for

Y. pestis to the decay of endogenous human DNA from the host individuals.

If the plague DNA is authentic and ancient, a correlation is expected between

the rate of DNA decay in the human host and in Y. pestis, because the

DNA has been exposed to similar environmental conditions for the same

amount of time. See Supplemental Experimental Procedures for additional

information.

Figure 3. Authenticity of Y. pestis DNA
(A) DNA damage patterns for RISE505 and RISE509. The frequencies of all possible mismatches observed between the Y. pestis CO92 chromosome and the

reads are reported in gray as a function of distance from 50 (left panel, first 25 nucleotides sequenced) and distance to 30 (right panel, last 25 nucleotides). The

typical DNA damage mutations C>T (50) and G>A (30) are reported in red and blue, respectively.

(B) Ancient DNA damage patterns (n = 7) of the reads aligned to the CO92 chromosome and the Y. pestis associated plasmids pMT1, pCD1 and pPCP1. The

boxplots show the distribution of C-T damage in the 50 of the reads. The lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, the

whiskers represent the 1.5 inter-quartile range (IQR) extending from the hinges, and the dots represent outliers from these.

(C) DNA fragment length distributions fromRISE505 and RISE509 samples representing both the Y. pestisDNA and the DNA of the human host. The declining part

of the distributions is fitted to an exponential model (red).

(D) Linear correlation (red) between the decay constant in the DNA of the human host and the associated Y. pestis DNA extracted from the same individual

(R2 = 0.55, p = 0.055). The decay constant (l) describes the damage fraction (i.e., the fraction of broken bonds on the DNA strand).

(E) Distribution of edit distance of high quality reads from RISE505 and RISE509 samples mapped to either Y. pestis (dark gray) or Y. pseudotuberculosis (light

gray) reference genomes. The reads have a higher affinity to Y. pestis than to Y. pseudotuberculosis.

(F) Plots of actual coverage versus expected coverage for the 101 screened samples. Expected coverage was computed taking into account read length dis-

tributions, mappable fractions of reference sequences, and the deletions in pMT1 for some of the samples. Samples assumed to contain Y. pestis are shown in

blue and RISE392 that is classified as not Y. pestis appears is shown in red. See also Figure S1 and S2, Table S3.
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Comparison of Samples to Y. pestis and Y. pseudotuberculosis
Reference Genomes
We used the alignments of several sets of reads (Y. pestis,

Y. pseudotuberculosis, and Y. similis) to Y. pestis CO92 and the

Y. pseudotuberculosis IP32953 genomes. Per sample we determined the dis-

tribution of edit-distances (mismatches) of the reads versus the particular

reference genome.We used these distributions to build a Naive Bayesian clas-
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Figure 4. Phylogenetic Reconstructions
(A) Maximum Likelihood reconstruction of the

phylogeny of Y. pseudotuberculosis (blue) and

Y. pestis (red). The tree is rooted using Y. similis

(not shown). The full tree including three additional

Y. pseudotuberculosis strains (O:15 serovar) can be

seen in Figure S4. Major branching nodes within

Y. pseudotuberculosiswith > 95%bootstrap support

are indicated with an asterisk and branch lengths are

given as substitutions per site.

(B) Maximum Likelihood reconstruction of the

phylogeny in (A) showing only the Y. pestis clade. The

clades are collapsed by population according to

branches and serovars, as given in (Achtman et al.,

1999, 2004; Cui et al., 2013). See Figure S4 for an

uncollapsed tree and Table S2 for details on pop-

ulations. Nodes with more than 95% bootstrap

support are indicated with an asterisk and branch

lengths are given as substitutions per site.

(C) BEAST2 maximum clade credibility tree showing

median divergence dates. Branch lengths are

given as years before the present (see Divergence

estimations in Experimental Procedures). Only the

Y. pseudotuberculosis (blue), the ancient Y. pestis

samples (magenta) and the most basal branch

0 strains (black) are shown. For a full tree including all

Y. pestis see Figure S5. See also Figure S3, S4, and

S5 and Table S5.

sifier to classify whether reads were originating

from Y. pestis, Y. pseudotuberculosis, or Y. similis.

See Supplemental Experimental Procedures and

Table S3.

Expected versus Actual Coverage
We estimated the expected coverage of Y. pestis

given a specific sequencing depth and correlated

that with the actual coverage of a genome per sam-

ple. Expected coverage was calculated as

c= 1"
YN

i = 1

!
1" li

g

"ri

where the reads have N different lengths, l1 to lN with

counts r1 to rN. To account for mappability we deter-

mined the mappable fraction for each reference

sequence using kmers of length 40, 50, and 60,

and then used the mappability value with the k-mer

length closest to the actual average read length for

each sample/reference combination. For more infor-

mation see Supplemental Experimental Procedures.

Genotyping For Phylogenetic Analyses
Alignments of all strains versus Y. pseudotuberculosis

IP32953 was used as reference for genotyping the

consensus sequences for all samples used in the

phylogeny. The samples were genotyped individually

using samtools-0.1.18 and bcftools-0.1.17 (Li et al.,

2009) and hereafter filtered (Supplemental Experimental Procedures). Based

on Y. pseudotuberculosis IP32953 gene annotations, the consensus se-

quences for each gene and sample were extracted. Because of the divergence

between Y. pestis and Y. pseudotuberculosis, a number of gene sequences

displayed high rates of missing bases and we removed genes where 20 or

more modern Y. pestis samples had >10% missingness. This corresponded

to a total of 985 genes, leaving data from 3,141 genes that were merged into
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a supermatrix. We created two different supermatrices, one with Y. similis,

Y. pseudotuberculosis, and Y. pestis containing 173 taxa 3 3,141 genes that

was used for the initial phylogeny (Figure 4A). The second supermatrix

consisted of all Y. pestis strains and the genomes from the two closest

Y. pseudotuberculosis clades, which was used for the divergence time

estimations.

Phylogenetics
The alignments were partitioned by codon position and analyzed with jmodelt-

est-2.1.7 (Darriba et al., 2012) to test for the best fitting substitution model. All

decision criteria (Akaike, Bayesian, and Decision theory) found theGeneralized

Time Reversible substitution model with gamma distributed rates, using

four rate categories, and a proportion of invariable sites (GTR+G+I) to be the

best fit for each of the three codon partitions. To test for recombination across

the chromosome we estimated linkage disequilibrium (LD) using 141 Y. pestis

strains. A total of 482 bi-allelic single nucleotide variations (SNVs), with aminor

allele frequency of 5% or higher were extracted. For all pairs of the extracted

A

B

Figure 5. Identification of Virulence Genes
(A) Gene coverage heatmap of 55 virulence genes (rows)

in 140 Y. pestis strains (columns). Sample ordering is

based on hierarchical clustering (not shown) of the gene

coverage distributions. RISE505 and RISE509 are

marked with a red asterisk. Coloring goes from 0% gene

coverage (white) to 100% gene coverage (blue).

(B) Depth of coverage of high quality reads mapping

across pMT1. Outer ring is mappability (gray), genes

(RNA: black, transposon: purple, positive strand: blue,

negative strand: red) and then the RISE samples ordered

after direct AMS dating. Sample ordering are RISE509,

RISE511, RISE00, RISE386, RISE139, RISE505 and

RISE397. See also Figure S6, Tables S2, S6, and S7.

AMS: Accelerator Mass Spectrometry.

SNVs, the LD r2 was calculated using PLINK 1.9 (Chang

et al., 2015) and plotted against the physical distance be-

tween the pairs. We reconstructed the phylogeny from

the codon-partitioned supermatrix using RAxML-8.1.15

(Stamatakis, 2014) with the GTR+G+I substitution model.

Bootstraps were performed by generating 100 bootstrap

replicates and their corresponding parsimony starting

trees using RAxML. Hereafter, a standard Maximum

Likelihood inferencewas run on each bootstrap replicate,

and the resulting best trees were merged and drawn on

the best ML tree. Initial phylogenies placed the Y. pestis

Harbin strain with an unusual long branch inside the

1.ORI clade and it was excluded from further analysis.

Additionally Y. pseudotuberculosis SP93422 (serotype

O:15), Y. pseudotuberculosis WP-931201 (serotype

O:15) and Y. pseudotuberculosis Y248 (serotype un-

known) was in a clade with long branch lengths and

were therefore also omitted (see Figure S4).

Heterozygosity Estimates
We determined heterozygosity by down-sampling the

Y. pestisbam-files to the sameaveragedepthas the corre-

sponding RISE samples, genotyped each of the samples

and extracted heterozygote calls with a depth equal to or

higher than 10. All transitions were excluded. See Supple-

mental Experimental Procedures for detailed information.

Divergence Estimations
To date the divergence time for Y. pestis and nodes within

the Y. pestis clade we performed Bayesian Markov Chain

Monte Carlo simulations using BEAST-2.3.0 (Bouck-

aert et al., 2014) and the BEAGLE library v2.1.2 (Ayres

et al., 2012). We used the codon-partitioned supermatrix that included the

two closest Y. pseudotuberculosis clades, with unlinked substitution models,

GTR+G+I with eight gamma rate categories and unlinked clock models. Dates

were set as years ago with the RISE509, RISE505, Justinian and Black Death

samples set to 4,761, 3,701, 1,474, and667years ago, respectively. All unknown

dates were set to 0 years ago.We followed previouswork (Cui et al., 2013;Wag-

ner etal., 2014) andapplieda lognormal relaxedclock, assumingaconstantpop-

ulation size. We re-rooted the ML tree from RAxML so that the root was placed

between the two Y. pseudotuberculosis clades (IP32953, 260, IH111554) and

(IP32921, IP32881, IP32463) and used this as the starting tree. Based on

the ML tree we defined the closets Y. pseudotuberculosis clade (IP32921,

IP32881, IP32463) and the Y. pestis clade as a monophyletic group and defined

auniformpriorwith 1,000and100,000yearsasminimumandmaximumbounds.

We ran 20 independent parallel BEAST chains sampling every 2,000 states for

between 52 and 64million states using a total of 240,000 core hours. The chains

were combined using LogCombiner discarding the initial 10 million states as

burn-in. The combined post burn-in data represented 961 million states and
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the effective sample sizes (ESS) for the posteriorwas 398, for the TreeHeight 238

and for the MRCA for Y. pseudotuberculosis and Y. pestis 216. All other

parameters had ESS > 125. We then sampled 1/5 of the trees from each

chain and combined them for a total of 192,406 trees that were summarized

using TreeAnnotator producing a maximum clade credibility tree of median

heights. We additionally ran BEAST2 sampling the priors only (and disregarding

sequence information) and found the posterior distribution no different than the

priors used. It suggests that the posterior distributions recovered when consid-

ering full sequence alignments are driven by the sequence information and are

not mere by-products of the sampling structure in our dataset (Figure S5).

Analysis of Virulence Associated Genes
To assess the potential virulence of the ancient Y. pestis strains, we identified

55 genes previously reported to be associated with virulence of Y. pestis (Sup-

plemental Experimental Procedures and Table S6 for details). Based on the

alignments to Y. pestis CO92 reference genome we determined the fraction

of the each gene sequence that was covered by at least one read for each

Y. pestis sample.Additionally, because thedifferent region 4 (DFR4) (Radnedge

et al., 2002) has been associated with virulence, but is not present in the CO92

genome, we used the alignments to Y. pestis microtus 91001 to determine the

presence of this region (Supplemental Experimental Procedures). We note that

the absence of KIM pPCP1 is due to it being missing from the reference

genome, but that it has been reported to be present in KIM strains (Hu et al.,

1998). The genotypes were generated as described above and the variant

call format (VCF) files from these analyses are available at http://www.cbs.

dtu.dk/suppl/plague/. For detailed information on genotyping of pde2, pde3,

rscA, pla, and flhD see Supplemental Experimental Procedures.

Identification of the Missing ymt Region on pMT1
Most of the regions that were unmapped could be associated with low mapp-

ability. However, we identified a region from 59–78 kb on pMT1 that could not

be explained by low mappability. From the depth of coverage this region was

absent in all of our ancient plague genomes, except for RISE397 (Figure 5). We

tested for the significance of this by comparing the distribution of gene depths

within and outside of the missing region using theWilcoxon rank-sum test (Ta-

ble S7). For all samples except RISE397 the region had a median depth of 0X

and the gene depth distributions were significantly different compared to the

remaining pMT1 plasmid genes (p values < 1E-9). For the RISE397 sample,

the regions had 0.43X and 0.42X median depths and there was no significant

difference in the depth of the genes in the two regions (p value 0.77).
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Supplemental Figures

Figure S1. DNA Damage and Decay, Related to Figure 3
(A) DNA damage patterns for the five Y. pestis associated samples not shown in Figure 3. The frequencies of all possible mismatches observed between the

Y. pestis CO92 chromosome and the reads are reported in gray as a function of distance from 50 (left panel, first 25 nucleotides sequenced) and distance to 30

(right panel, last 25 nucleotides). The typical DNA damage bases are C>T (50 ) and G>A (30) mutations are reported in red and blue, respectively.

(B) Ancient DNA damage patterns of the reads aligned to the CO92 chromosome and the Y. pestis associated plasmids pMT1, pCD1 and pPCP1. The boxplots

show the distribution of G-A damage in the 30 of the reads. The distributions are made from the seven Y. pestis samples. The lower and upper hinges of the boxes

correspond to the 25th and 75th percentiles, the whiskers represent the 1.5 inter-quartile range (IQR) extending from the hinges, and the dots represent outliers

from these.

(C) DNA fragment length distributions from five Y. pestis samples not shown in Figure 3 representing both the Y. pestis DNA and the DNA of the human host. The

declining part of the distributions is fitted to an exponential model (red).
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Figure S2. Mapping Affinity, Related to Figure 3
(A) Distribution of edit distance of high quality reads of known origin and the eight Yersinia associated samples. The investigated, known reads are from Y. pestis

620024 (0.PE7), Y. pestis D1982001 (1.IN2), Y. pseudo (IP32464) (from the clade closest to Y. pestis), and Y. similis (which is an outgroup to both Y. pestis and

Y. pseudotuberculosis). For RISE00, RISE139, RISE386, RISE397, RISE505, RISE509 and RISE511 the reads are closer to Y. pestis than to

Y. pseudotuberculosis, and there are far more hits at low edit distances (RISE505 and RISE509 are shown in Figure 3). This is consistent with these reads

originating from Y. pestis. Reads from the RISE392 sample instead have more hits at higher edit distances and have similar distances to both the Y. pestis and

Y. pseudotuberculosis reference genomes. This suggests that RISE392 is neither Y. pestis nor Y. pseudotuberculosis, but a more distantly related species.

(B) Distribution of the amount of reads mapping to the Y. pestis reference genome, at different edit distances. For each of the three investigated species (Y. pestis

n = 10, Y. pseudotuberculosis n = 10, and Y. similis n = 5) several different sets of reads were mapped against the reference, and the number of reads matching at

different edit distances was counted. For each edit distance the distribution of reads for each species is shown in the form of a boxplot. The lower and upper

hinges of the boxes correspond to the 25th and 75th percentiles, the whiskers represent the 1.5 inter-quartile range (IQR) extending from the hinges, and the dots

represent outliers from these.

(C) Ratio between the number of reads mapping to Y. pestis and the number of reads mapping to Y. pseudotuberculosis, for different edit distances, for three

investigated species. Input data as in B. For each sample the ratio between the number of reads matching Y. pestis, and the number of reads matching

Y. pseudotuberculosiswas calculated, and the distribution of these ratios then shown in the form of a boxplot for each edit distance. These features were used to

predict the taxonomy of unknown samples. The lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, the whiskers represent the 1.5

inter-quartile range (IQR) extending from the hinges, and the dots represent outliers from these.

(D) Depth of coverage plots for the seven ancient Y. pestis samples mapped to the CO92 chromosome, pCD1, pMT1 and pPCP1. The RISE samples are ordered

according to agewhere the oldest sample is the outermost histogram. Outer ring:Mappability (gray), genes (RNA: black, transposon: purple, positive strand: blue,

negative strand: red), RISE509, RISE511, RISE00, RISE386, RISE139, RISE505 and RISE397 (blue). Depth histograms show sequence depth in 1 kb windows for

the chromosome and 100 bp for the plasmids with a max of 5X depth for each ring. The plots were generated using Circos.
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Figure S3. Phylogenetics, Related to Figure 4
(A and B) Heterozygosity estimates of RISE505 (A) and RISE509 (B), the respective ancient Y. pestis samples are shown in red. All samples were downsampled to

the same depth as either RISE505 or RISE509 and the number of heterozygote transversions determined (y axis).

(C) Linkage Disequilibrium (LD) determined from 141 Y. pestis strains in 0.1Mb intervals across the Y. pestis CO92 chromosome. There is no decay in LD across

the genome which means that there are no recombination and the phylogenetic tree can be averaged across the individual genes.

(D) Maximum Likelihood tree generated using RAxML and the 2,298 phylogenetic informative sites described by Morelli et al. (2010) and Cui et al. (2013). The

strains are colored by species with Y. pseudotuberculosis IP32953 being black and Y. pestis blue. The Justinian plague sample and the Black Death samples are

colored in magenta and brown, respectively. Branch lengths are substitutions per site.
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Figure S4. Phylogenetic Trees, Related to Figure 4
(A) Maximum Likelihood phylogeny of all strains used in the analysis. Y. similis (blue), Y. pseudotuberculosis (green) and Y. pestis (red). The strains that were

excluded from the phylogeny in Figure 4A: SP93422, Y428 and WP-931201. Major branch nodes with bootstrap support > 95% are indicated with an asterisk.

Branch lengths are substitutions per site.

(B) Maximum Likelihood tree of the Y. pestis clade only. The tree is the un-collapsed version of the tree shown in Figure 4B. Nodes marked with an asterisk have >

95% bootstrap support, not all internal nodes are marked with bootstrap values. Strain names are colored according to the population nomenclature in Table S2.

Branch lengths are substitutions per site.
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Figure S5. BEAST Divergence Dating, Related to Figures 4 and 6
(A) Maximum clade credibility tree of the Y. pestis clade. Strains are annotated based on their population (see Table S2) and colored according to population.

Branch lengths are given as years before present. Taxa with asterisks in their name have not previously been assigned a population, but are named according to

the clade they are placed in.

(B) Posterior probability density distribution for the chain where we sampled from the priors only (orange) and the chains including the alignment data (blue).
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Figure S6. Investigation of Virulence Genes, Related to Figure 5
(A) Depth of coverage for the seven ancient Y. pestis samples in 100 bp bins across Y. pestis Microtus 91001 genome at 1,041 kb to 1,063 kb. For each sample the

upper panel represents the depth of high quality reads in the 100 bpwindow. The lower panel representmappability of the particular region calculated usingGEM-

mappability with a k-mer of 50.

(B) Multiple alignment of the rcsA gene in Y. pseudotuberculosis IP32953, Y. pestisCO92 and the contig matching the region from the RISE509 de novo assembly.

The 30 bp internal duplication in CO92 is absent from the RISE509 sequence that therefore carries the ancestral IP32953 rcsA genotype.
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Supplemental Experimental Procedures 
 

Samples and archeological sites 

 

Short summaries of archaeological context and previous analyses performed on the sites 

where Y. pestis was detected are provided here. Dating and stable isotope analyses on 

collagen are summarized in Table S1.  

 

Sope, Estonia, Corded Ware Culture 

The cemetery at Sope is situated in a coastal area in the north-eastern part of Estonia, about 

1.8 km inland from the present Baltic Sea shoreline. Altogether around 10 individuals have 

been found. Seven individuals were unearthed during farming at the beginning of the 20th 

century and were later reburied (Lõugas et al., 2007). Archaeological excavations carried out 

in 1926 (Moora, 1932) and in 1933 (Indreko, 1935) each recovered one female skeleton – 

Sope I and Sope II respectively (Aul, 1935).  

 

The deceased in Sope had been inhumed in a crouched position, which is characteristic for the 

Corded Ware Culture throughout the Eastern Baltic. According to osteological analysis the 

stature of Sope I had been 155.12 ± 3.72 cm (maximum length of the left femur 40.9 cm) and 

she died at the age of 25–35. The height of the second female (Sope II) was 160.56 ± 3.72 cm 

(maximum length of the left femur 43.1 cm) and her age at death was 22–24 years. An 

additional right femur was found co-mingled with Sope I belonging to an adult male whose 

height had been 167.72 ± 3.72 cm (maximum length of the bone 46 cm).  

 

Only one individual was sampled for DNA from this site. The sample, RISE00, was an upper 

left M2, taken from the Sope I female. The female sex was confirmed through DNA sexing 

(Allentoft et al., 2015). She appeared to be buried in a crouched position while lying on her 

back with her skull towards south-east. The length of her remains was about a meter. 

However the skeleton was not articulated. For example the left femur was on the right side of 

the “body” and vice-versa, the proximal end of the left tibia was facing away from the skull 

and the right tibia was next to the left femur being almost parallel to it. As the skeleton was 

disarticulated and no metacarpals or metatarsals were found (Aul, 1935) it has been suggested 

that the initial decomposition of the body happened elsewhere and the skeletonized remains 

were gathered and wrapped inside something and then buried in the cemetery at Sope 

(Jonuks, 2009).  

 



The individual was recovered with few items: an awl and a worked bone made from 

sheep/goat were next to the remains, and a fragment of an unidentified artifact from cattle was 

near the mandible, underneath which was a pig tooth (Kriiska et al., 2007).  

 

Both females have been AMS (Accelerator Mass Spectrometry) dated (Lasak, 1996) (Table 

S1). δ13C on Sope I indicates protein mainly from terrestrial sources, despite the location 

close to the coast. δ15N is quite low, suggesting a substantial input of protein from vegetable 

sources. 

 

Chociwel, Poland, Unetice culture 

Chociwel is situated just a few kilometers north of Strzelin, at the foreground of the Sudetes 

Mountains. The site was discovered in 1993. In 1995, during construction works, part of the 

Únětice necropolis was excavated. In 2010, a new group of burials including three females, a 

young male and a child were excavated (Pokutta, 2013).  

 

Chociwel is a multi-period site with Funnel Beaker and Globular Amphorae settlements 

(Cholewa, 1998), along with an Early Bronze Age (EBA) cemetery and features dated to the 

Migration Period and later medieval times. The EBA graves were arranged in north-south 

rows. The deceased were oriented E-W and only one burial resembles the north-south body 

orientation usual for Unetice burials.  

 

The burials in Chociwel display a moderate number of artifacts, primarily consisting of 

between 2 and 5 ceramic vessels. 

 

Four individuals were sampled for DNA from this site. The sample in which plague was 

detected was RISE139, from grave 20. This grave contained a skeleton osteologically 

determined as a female of mature age, but DNA analysis showed it to be a male (Allentoft et 

al., 2015). 

 

Nine individuals have been dated (Pokutta, 2013) (Table S1). The chronometric dating is 

consistent with the archaeological assignment to the Unetice period, and the individual from 

which RISE139 was taken seems to be one of the first buried at the site. Stable isotopes have 

also been measured, but it is difficult to link these with the individuals sampled for DNA 

(Pokutta, 2013). C/N was not measured at the Uppsala lab, but in Stockholm. A high C/N 

value from RISE139 indicates measurement from this individual should not be trusted. The 

high δ15N value from grave 21/2011 is from a milk tooth and probably due to lactation 



effects. Other stable isotope values from the site are within the usual range for European 

Neolithic/EBA populations. 

 

Bulanovo, Russia, Sintashta culture 

Cemetery, excavated by Khalyapin 2001-2002 (Khalyapin, 2001). 

The dead were buried in shallow pits without barrows (Figure 1). The skeletons were laid in 

elongated position on their back. The inventory was not numerous (triangular stone 

arrowheads and bronze shape with bone-handled saws). Burial features (no mound, shallow 

graves, position of the dead, and lack of pottery and animal sacrifices) and the appearance of 

grave goods have analogies among Seima-Turbino sites. The Bulanovo cemetery can be seen 

as the result of interaction between the Sintashta population and the bearers of Seima-Turbino 

traditions. 

 

The sample RISE386 in which plague was detected is from burial 6, individual 1. This 

contained bones from an adult male, 30-40 years old. DNA confirms male sex (Allentoft et 

al., 2015). 

 

Three individuals were sampled from this site, two of which had good DNA preservation 

(Allentoft et al., 2015). All three were dated, see Table S1. The dates are in relatively good 

agreement, but it should be noted that RISE386 and 387 have elevated δ15N values, 

suggesting an intake of protein from freshwater fish, and a freshwater reservoir effect on the 

dates. These two dates should therefore be reduced somewhat. This is less pronounced in the 

third individual. 

 

Kapan-Shahumyan, Armenia, Early Iron Age  

The excavation was conducted in 2012 by Dr. Artak Gnuni near the village Shahumyan 

(Syunik region of Armenia).  The site is located in the hills adjacent to the left bank of the 

river Voghji, 5 km north-east of the city of Kapan. The survey revealed the presence of a 

multilayer settlement and a burial ground dated to Early Iron Age. In total eleven complete 

burials were excavated. 

 

Four individuals were sampled, two of which had good DNA preservation, both from burial 

No. 6. The tomb was a small stone chamber built of medium size stones, oriented from north 

to south. The upper horizon of the burial was disturbed and the stones of the ceiling were 

absent. The degree of the walls sloping inward implied the presence of a false vault. 

 



Stones and clay of brown color filled the grave, with a small impurity of sand. The filling 

contained small fragments of ceramics, including fire exposed items and drop-shaped beads. 

From the north-eastern part of the burial, a fragment of a phalange was discovered. In the 

central part of the southern wall a carnelian bead was found. A badly burned bone fragment 

was also found in the central part of the tomb. The filling contained distinct patches of ash.  

 

The burial had two skeletons. The first one (sample RISE396a) was in a crouched position on 

the right side and oriented from the north-east to south-west, head turned to the north. It was 

located on the western part of the tomb under the south wall. This individual had a massive 

bracelet on one hand, two more on the other, as well as a ring on the skull. There were also 

several ceramic items under the skeleton, two pitchers (under the skull and the pelvis), and a 

bowl (under the shoulder-blade). This individual had been determined as an adult female, 20-

25 years old. This was confirmed by DNA sexing (Allentoft et al., 2015). 

 

To the east of the skeleton, near the southern wall, was a stone that separated the two 

skeletons. 

 

The skull of the second individual (sample RISE397a) was found in the northeast corner with 

a ring on the skull, similar to the first individual. The bones were in a very decayed condition, 

with only those of the extremities well preserved. The bones were osteologically determined 

as a juvenile female, 15-18 years old, but DNA analysis indicated that they actually are from 

a male (Allentoft et al., 2015). 

 

A specific feature of the burials is the presence of tiny pitchers. These vessels, evidently the 

objects of worship, are broadly encountered artifacts in the early Iron Age monuments in 

Armenia. Analysis of the inventory allows the dating of the burial to the X-VIII cent. BC. 

 

The dating of the two individuals supports this chronology (Table S1). Skeleton 1 may be 

slightly older, although contemporaneity is not excluded. Low δ15N values suggest an 

unusually high proportion of vegetable protein, possibly including C4 plants since δ13C is 

also somewhat elevated. 

 

Kytmanovo, Russia, Andronovo culture 

The Kytmanovo burial ground was excavated by A. P. Umanski in 1961-1963. Most burials 

were attributed to the Andronovo culture (Umanski et al., 2007). Altogether 37 graves were 

excavated. 

 



The individual with plague is sample RISE505, collection number 6652-42, burial 20. It is 

located in the center of the Kytmanovo burial ground.  

 

According to description and visual data there were three individuals in the grave – one adult 

and two children. One of the children is an infant, less than one year old. The baby was laid in 

front of the adult. Although the majority of the Andronovo people were buried on their left 

side in crouched position some small infants were buried on their right side as if they are 

looking at adults. This is exactly what we see in this case. The adult is probably female, 30-35 

years old. Female sex was confirmed by DNA sexing (Allentoft et al., 2015). The second 

child according to Umanski et al., (2007) is about 4-6 years old. Regrettably we cannot check 

this proposition because no child bones survived.  

 

Archeological data suggest all burials in this grave were simultaneous. This indirectly 

supports plague as a cause of death of these people since this is the only case in the 

Kytmanovo (all other burials are single or double).  

 

The objects found in the grave are usual for Andronovo people. In this case these are three 

pots, one for each individual (note that the size of pots corresponds with the age of the 

buried). Several bronze plaques were associated with the adult. Two of them were located in 

the os temporalis area and one on the right shoulder. Notably, no gold artefacts were found in 

the grave. Taking in account the rather poor bronze kit found in the grave we can suggest that 

individuals from the grave did not belong to the high strata of Andronovo society. Altogether 

7 burials from the 37 graves have golden objects.  

 

Altogether five individuals from the site were sampled, all of which had good DNA 

preservation (Allentoft et al., 2015). All five were dated, but one person turned out to be 

medieval, while another dating failed, see Table S1. The samples have rather high δ13C and 

also somewhat elevated δ15N values which suggests protein input from C4 plants, possibly 

also from freshwater fish. 

 

Afanasieva Gora (Bateni), Russia, Afanasievo culture 

The Afanasieva Gora site is sometimes also called Bateni. It was excavated during the 

turbulent period of Russia directly after the Revolution and Civil War in 1923 by SA 

Tephloukhov. Although this is really a focal site on which the Afanasievo culture was 

recognized, no photos or regular drawings were made during excavation. A short description 

of the graves is given in Vadetskaya et al. 2014 (pages 124-125 and 301) (Vadetskaya et al., 



2014), based on the diary of Teploukhov. Later, graves were excavated in the 1960s by 

Gryaznov and these are well documented (Vadetskaya et al., 2014). 

 

The samples RISE509 and RISE511 are both from grave 15. This is a mass grave where 

bones of 7 individuals were found. The skeletons were from a male (20-35), three females 

(two of them are 25-30 years old, one possibly older than 40) and three children (one 10-12 

years, another 5-8 years old. Bones of the third were lost and no information about age 

exists). Osteological sexing has been confirmed by DNA (Allentoft et al., 2015).  

 

Because single bones of roe deer, fox and chipmunk were found in the grave, Teploukhov 

suggested that these bones were mixed occasionally with children bones when they were 

reburied in the grave from some other place. Also there is one strange observation; 

Teploukhov remarked that incisors in the male mandible were replaced with premolars tightly 

placed into the alveolus. At present time most teeth have been lost.  

 

As to artifacts the only ones were fragments of typical Afanasievo egg-shaped pots.  

 

Collective burials are quite unusual for Afanasievo people. Most Afanasievo burials are 

single ones. Double burials with two adults are just 1-5% of all burials; graves with more 

individuals are very rare. However, in Afanasieva Gora there is one case with 4 individuals in 

one grave (grave 24) and and one with 7 individuals (grave 41). While this is a collective 

burial, in this case the archeologists believe that the burials were made successively.  

 

Three individuals were sampled from this site (RISE509-511), two of which were from burial 

15. All three are adult females, one of which is aged 20-25 (RISE509) and two 25-30 years 

old (RISE510 and RISE511). All three were dated, giving consistent dates, see Table S1. The 

interpretation of grave 15 as a mass grave is supported by the dates. Δ13C values are 

relatively high, which could indicate protein sources including C4 plants and/or freshwater 

fish. 

 

Creation of a database for identification of Y. pestis reads 

The database for identification of Y. pestis reads contained all previously sequenced Y. pestis 

strains (n=140), Y. pseudotuberculosis strains (n=30), Y. similis strains (n=5) and a selection 

of Y. enterocolitica strains (n=4) (Batzilla et al., 2011; Bos et al., 2011; Chain et al., 2006; 

Cui et al., 2013; Deng et al., 2002; Eppinger et al., 2007, 2009, 2010; Parkhill et al., 2001; 

Reuter et al., 2014; Shen et al., 2010; Song et al., 2004; Thomson et al., 2006; Wagner et al., 

2014; Wang et al., 2011; Zhang et al., 2009). See Table S2 for details. 



 

Assembly of Y. pestis from Justinian and Black Death samples 

The Black Death plague data from samples Bos8124, Bos11972 and Bos8291 were 

downloaded from SRP008060 split into pairs and processed similarly to our ancient samples 

except that only merged sequences were used (Bos et al., 2011). Finally, the three samples 

were merged to one representative sample. Data from the Justinian Plague sample A120 was 

downloaded from SRP033879 and processed similarly to our ancient samples except that only 

merged and unmerged pair1 reads were used for the downstream analyses (Wagner et al., 

2014). 

 

Assembly of Y. pestis from modern samples 

Data from modern Y. pestis samples were obtained by downloading reads from SRA010790 

(Cui et al., 2013) and the complete genomes available at NCBI (Table S2). Y. 

pseudotuberculosis data were downloaded as reads from ERP000171 (Reuter et al., 2014). To 

achieve maximum comparability of data between the samples, we simulated reads from the 

complete genomes that were downloaded from NCBI. Using ART (Huang et al., 2012) 100 nt 

paired end error-free reads with an average insert size of 300 nt and depth of 50X were 

generated. The modern genomes were processed as the ancient samples except that they were 

not re-scaled for DNA-damage. 

 

Molecular degradation patterns in Y. pestis and the human host 

The DNA sequence length distribution obtained from shotgun sequencing data carries 

detailed information about the state of molecular preservation in an ancient sample (Allentoft 

et al., 2012). In an ancient DNA extract there should be a negative exponential correlation 

between the number of DNA molecules and their length. This is an effect of random 

fragmentation of the DNA strands, leaving few long DNA fragments and many short ones 

(Allentoft et al., 2012; Deagle et al., 2006). In order to validate the authenticity of the 

sequenced Y. pestis DNA we therefore examined the length distribution for all eight samples. 

Following previous studies (Allentoft et al., 2012; Olalde et al., 2014; Orlando et al., 2013), 

we investigated only the declining part of the distributions, thereby excluding biases caused 

by poor recovery of short DNA fragments and a fixed maximum sequencing length. The 

fragment length distributions for all seven Y. pestis datasets conformed well to an exponential 

decay model (R2 = 0.94-0.99) (Figure 3 and Figure S1) as expected for ancient DNA. 

 

Deagle et al. (Deagle et al., 2006) showed that the decay constant (λ) in the exponential 

relationship represents the DNA damage fraction. We estimated λ in the seven Y. pestis 



datasets to between 0.044 and 0.139 (Figure 3, Table S3 and Figure S1), implying that only 

4.4% of the phosphodiester bonds in the DNA backbone are broken in RISE392, whereas 

13.9% are broken in RISE509 - the most degraded sample. Moreover, 1/ λ is equivalent to the 

expected average DNA fragment length (Deagle et al., 2006) and this ranged from 6.6 bp to 

22.7 bp in the seven samples (Table S3). These numbers show that the Y. pestis DNA is 

highly degraded as would be expected given the age of the skeletons. We note that the 

average expected fragment length (1/ λ) is not equivalent to the average sequence length, 

which is biased both experimentally and bioinformatically. 

 

It has been shown that long-term post mortem DNA fragmentation can be described as a rate 

process, and that the damage fraction (λ, per bond) can be converted to a decay rate (k, per 

bond per year), when the age of the sample is known (Allentoft et al., 2012). Using median 

calibrated radiocarbon ages (Table S3) we get rates of decay from 1.41E-5 to 3.17E-5 strand 

breaks per site per year, corresponding to molecular half-lives (for 100 bp fragments) of 492 

years and 219 years respectively. After this period of time, 50% of all 100 bp stretches in the 

genome will be lost due to one or more strand breaks (Allentoft et al., 2012).  

 

We also investigated the data for a correlation between DNA degradation patterns in the Y. 

pestis and that of the human host individual. In general the DNA decay proved slower for 

ancient human DNA than for Y. pestis - on average 1.6 times slower (Table S3). This is 

perhaps not unexpected given that post mortem DNA preservation conditions is likely more 

favorable inside human cells embedded in solid tooth cementum or dentine than they are in 

bacteria. Importantly, however, there was a correlation between the estimated decay rate of 

the human host DNA and the Y. pestis DNA that was co-extracted from the same individual 

(R2 = 0.55, P = 0.055) (Figure 3). A fast decay rate in the human DNA is accompanied by a 

fast decay rate in the Y. pestis DNA. This apparent link constitutes another argument that the 

Y. pestis is indeed associated with the human remains rather than representing some 

secondary microbial invasion.   

 

In summary, the fragmentation patterns of the DNA we have identified as Y. pestis carry 

strong signatures of authentic and highly degraded ancient DNA, which would not be 

expected if the DNA was derived from, for example, modern soil bacteria. Finally, it is worth 

noting that some of the human DNA sequence distributions display a 10 bp periodicity 

(Figure 3 and Figure S1). This phenomenon has been described previously in genomic data 

and is likely reflecting the 10 bp turn of the DNA helix combined with preferential strand 

cleavage of the DNA backbone facing away from nucleosome protection (Pedersen et al., 

2014). 



 

Comparison of samples to Y. pestis and Y. pseudotuberculosis reference genomes 

The sequence of Y. pestis is very similar to that of its ancestor, Y. pseudotuberculosis. It was 

therefore important to investigate which of these species our unknown samples more closely 

resembled. We did this by mapping reads from the eight potential Y. pestis samples against 

both reference genomes (Y. pestis CO92 and Y. pseudotuberculosis IP32953). For each set of 

reads we then compared the number of reads mapping with different number of mismatches 

(different “edit distances”) to these two references.  

 

We first mapped several sets of reads from known Y. pestis and Y. pseudotuberculosis 

genomes against the two references. For comparison we also included sequences from Y. 

similis, which is an outgroup to both Y. pestis and Y. pseudotuberculosis. Typical examples of 

the results of mapping known sequences to the two reference genomes are shown in Figure 

S2. It is clearly seen that Y. pestis samples are slightly closer to the Y. pestis genome than to 

the Y. pseudotuberculosis genome: Y. pestis samples have more reads matching perfectly to 

Y. pestis than to Y. pseudotuberculosis (i.e., more reads mapping with edit distance=0; ratio > 

1). The inverse is the case for Y. pseudotuberculosis samples, which have fewer perfect 

matches to Y. pestis than to Y. pseudotuberculosis (ratio < 1). Samples from Y. similis map 

about equally well to both reference genomes (ratio ~ 1), and have far fewer perfectly 

matching reads than the other two species (Figure S2).  

 

Figure S2 summarizes the results of mapping several sets of reads from known species to the 

two reference genomes. For each edit distance, and each of the three investigated species, the 

distribution of frequencies obtained when mapping to the two references is shown in the form 

of a boxplot. The phenomena described above can bee seen to hold across many different 

samples, but with some spread in the actual values. Another way of investigating the 

closeness of sample reads to the two references, is by computing the ratio of reads mapping to 

Y. pestis vs reads mapping to Y. pseudotuberculosis. This is shown in Figure S2, note that the 

ratio is larger than 1 for perfect matches when a Y. pestis sample is used, and less than 1 for 

the other species. 

 

Figure 3 and Figure S2 show the results of mapping the eight selected RISE samples of 

unknown origin against the two reference genomes. All samples, except RISE392, were 

found to be more similar to Y. pestis than to Y. pseudotuberculosis, and to have the majority 

of their reads mapping perfectly to Y. pestis (edit distance=0). For RISE392 reads mapped 

about equally well to both Y. pestis and Y. pseudotuberculosis reference genomes, and there 



were fewer reads mapping perfectly (edit distance > 0) than imperfectly, indicating that 

RISE392 is neither Y. pestis nor Y. pseudotuberculosis, but a more distantly related species.  

 

Bayesian classification of species assignment for unknown samples 

To further quantify the qualitative assessment of read similarities described above, we 

constructed a naïve Bayesian classifier capable of predicting the species of an unknown 

sample based on the distribution of read counts mapping at different edit distances to the Y. 

pestis and Y. pseudotuberculosis reference genomes. Specifically, our method uses the 

following 10 values as input (“feature vector”): the ratio between reads mapped to Y. pestis 

and reads mapped to Y. pseudotuberculosis for edit distance 0 to 4 (these are the first 5 

features), and the frequency of reads mapping to Y. pestis at edit distance 0 to 4 (the last 5 

features). The output is the posterior probabilities that the sample is from Y. pestis, Y. 

pseudotuberculosis, or Y. similis. The method was trained on the data obtained from mapping 

reads of known origin to the two reference genomes. Details about the classifier are given 

below. 

 

When the classifier was used to assess the eight unknown RISE samples, it very clearly 

classified all samples, except RISE392, as Y. pestis, with posterior probabilities of 100% 

(Table S3). RISE392 was found to have 0% posterior probability of being Y. pestis, and was 

instead classified as Y. similis (posterior probability = 100%). It should be noted that our 

method is only capable of classifying unknown samples as one of the three species mentioned 

above, and that especially samples classified as Y. similis, may generally correspond to any 

non-pestis, non-pseudotuberculosis, more distantly related species. 

 

We also used the method to classify the remaining unknown RISE samples. The majority of 

these were classified as Y. similis (88 of 102 samples), while 13 (including the 7 investigated 

above) were classified as Y. pestis (data not shown). However, most of these samples have 

very few reads mapping to our Yersinia reference genomes, and classifications are therefore 

very uncertain. Among samples with more than 500 reads mapping to the reference genome, 

there were 20 classified as Y. similis, and 9 classified as Y. pestis (again including the 7 

samples mentioned above). Table S3 shows the results also for the additional two putative Y. 

pestis samples. Among these, RISE510 was found in the same mass grave as RISE509 and 

RISE511 (which we are very certain are Y. pestis), but due to low number of reads has 

relatively low posterior probability of being Y. pestis (P = 52%). 

 

Naïve Bayesian classifier: technical details 



Naïve Bayesian classifiers use a set of input values (the feature vector) as the basis for 

computing the probability that an unknown data point belongs to one of a number of classes. 

In the present case the possible classes were the three species Y. pestis, Y. pseudotuberculosis, 

and Y. similis, and the feature vector consisted of 10 values: 5 ratios (the number of reads 

mapping to Y. pestis vs the number of reads mapping to Y. pseudotuberculosis, for edit 

distance 0 to 4), and 5 frequencies (the fraction of reads mapping to pestis at edit distance 0 to 

4).  

 

Naïve Bayesian classification is based on two main ideas: First, it is assumed that the 

individual features are independent, conditional on the class, even though this is often 

incorrect (hence “naïve”). It has been shown that despite this overly simplified assumption, 

naïve Bayesian classification often has very good performance in classification (Hand and 

Yu, 2001; Zhang, 2004). The assumption of independence means that it is possible to 

compute the joint probability of observing any set of feature values, given the class, simply 

by multiplying the probabilities of observing the individual features, given that class: 

! !!,!!,… ,!!" !! = ! !! !! ! !! !! …! !!" !! = !(!!|!!)
!"

!!!
 

This quantity (the probability of the observed feature values, given the class) is referred to as 

the “likelihood”. How the individual probabilities are computed depends on the hypotheses 

about the investigated system. In our case we assume that each of the 10 features has a typical 

range of values specific to each class (for instance, the ratio for edit=0 is > 1 for pestis, and 

<1 for the other two species). Specifically, we assume that any given feature value is drawn 

from a normal distribution with mean and standard deviation depending on the class. The 

probability density for a given feature value for a given class is therefore found as the normal 

probability density using the mean and standard deviation for that feature and class. As an 

example, the probability density of observing the read mapping ratio 1.3 for edit distance = 0 

for the class Y. pestis, is the following in our model: 

  

! !! = 1.3 !"#$%# = !!"#$%& ! = 1.3|! = 1.25,! = 0.057 = 4.76 

 

The means and standard deviations are parameters in our model, and can be estimated simply 

by computing means and standard deviations from known examples (“training data” – in our 

case the data used also in Figure S2B-C these are maximum likelihood estimates of the 

parameters). Note that the independence assumption also means that it is possible to estimate 

parameters in the model from much smaller data sets than if features were not taken to be 



independent (one just needs sufficient training examples to estimate parameters for each 

feature individually, instead of examples from all possible combinations of all features).  

 

The second main idea in naïve Bayesian classification is to use Bayes theorem to compute the 

posterior probability of the possible classes, given the observed feature vector. As an 

example, the posterior probability for class 1 is computed as follows: 

 

! !! ! = ! ! !! !(!!)
!(!)  

 

Here, F is the entire feature vector (containing 10 values in our case) and the likelihood 

! ! !!  is calculated assuming independence of features as shown above. !(!!) is known as 

the prior probability of the class. In the present case we simply used a flat prior distribution, 

with the same prior probability for all three classes. ! !! !  is the posterior probability of the 

class, and quantifies our degree of belief in this class after seeing the data. Finally, !(!) is 

known as the “evidence” and can be seen as a normalizing factor, ensuring that the posterior 

class probabilities will sum to one. !(!) is computed as the sum of the probabilities for the 

three possible ways of getting the observed features: 

 

! ! =  ! ! !! ! !! + ! ! !! ! !! + ! ! !! !(!!) 
 

As mentioned, we estimated means and standard deviations for each of the 10 features, for 

each of the 3 classes, from a set of known samples mapped against the Y. pestis and Y. 

pseudotuberculosis reference genomes. It turned out that the data available to estimate 

parameters for Y. similis displayed what we judged to be unrealistically little diversity, and we 

therefore estimated the standard deviations for this class by taking the average of the 

corresponding standard deviations estimated for Y. pestis and Y. pseudotuberculosis. (This 

approach, where parameter values from other groups are used to help regularize the estimate 

for a group with limited data, is known as shrinkage).  

 

Analysis of sequencing depth, expected coverage, and actual coverage 

Sequencing reads are not distributed evenly across a sequenced genome - some positions are 

covered by more than the average number of reads and others by less. Consequently, 

coverage (the fraction of positions covered by at least one read) is not necessarily 100% even 

when the sequencing depth (the average number of reads covering any given position) is well 

above 1. It is possible to compute the expected coverage based on the distribution of read 

lengths, under the assumption that read locations have been drawn randomly from the entire 



genome (see below). We here use the comparison of actual and expected coverage computed 

in this manner, as yet another way to assess the authenticity of the analyzed reads. The idea is 

that if mapped reads do in fact originate from Y. pestis, then their locations will be close to 

randomly distributed across the reference genome, and expected coverage should therefore 

match actual coverage well. If, on the other hand, the reads do not belong to Y. pestis, then 

their mapped locations on the reference genome are more likely to be biased, for instance 

with over-representation in regions of low complexity, or perhaps in regions that have been 

more highly conserved through evolution. In that case, the match between actual and 

expected coverage should be worse. 

Assuming that all reads have exactly the same length the expected coverage can be computed 

using the following expression: ! = 1 − 1 − !
!

!
, where l=read length, g=genome length, 

and r=number of reads. The rationale is as follows: The probability that any given position in 

the reference genome will be covered by a read is !!. The probability a position will not be 

covered by a single read is therefore 1 − !
!. The probability that any given position will not be 

covered after r reads have been placed randomly and independently is therefore (1 − !
!)
!. The 

probability that a given read is in fact covered after placing r reads, is 1 minus the probability 

that it is not covered, i.e., 1 − 1 − !
!

!
. Since the expected fraction of covered sites, is the 

same as the probability that any given site is covered, this will also be the expected coverage, 

c.  

Based on the expression above, it is fairly simple to compute the expected coverage also in 

the event that all reads do not have the same length. If, for instance there are r1 reads of length 

l1, and r2 reads of length l2, then the expected coverage is simply: ! = 1 − 1 − !!
!

!! 1 −
!!
!

!!
. More generally, if the reads have N different lengths, l1 to lN, with counts r1 to rN, then 

the expected coverage is: 

 

! = 1 − 1 − !!!

!

!!!

!!

 

 

Even if the location of reads are in fact randomly sampled from the reference genome, there 

are still two major reasons why an expected coverage, computed according to this equation, 

may not correspond to the actual coverage. First, if the reference genome contains repeats 

with a length longer than the read length, then it will not be possible to uniquely map reads 

corresponding to these repeats. The expected coverage will therefore only refer to the 



mappable part of the reference sequence. For each reference sequence (the Y. pestis genome 

and the three associated plasmids), we, for each sample, determined the mappable fraction 

using k-mer lengths similar to the average read lengths in that sample. Specifically, we 

determined the mappable fraction for each reference sequence using kmers of length 40, 50, 

and 60, and then used the mappability value with the k-mer length closest to the actual 

average read length for each sample/reference combination. The expected coverage, 

accounting for mappability, is then computed by multiplying the expected coverage by the 

fraction of the reference sequence that is mappable: !!"# = !!"#!. The second reason why 

expected coverage may differ from actual coverage, is if the reference sequence contains 

regions that are not present in the sequenced sample. We found this to be the case for the 

pMT1 plasmid, which, for 6 of the investigated samples compared to the reference sequence, 

was found to lack a 19 kb region harboring the ymt gene important for pathogenicity. Again, 

this can be accounted for by multiplying the expected coverage by the fraction of the 

reference sequence that is present: !!"#,!"# = !!"#!!"#!. In the case of pMT1, samples 

lacking this 19 kb region were clearly seen in plots of expected vs actual coverage as being 

placed well below the line corresponding to perfect correlation.  

 

Figure 3 shows plots of actual vs. expected coverage computed for all samples for the 

chromosome and the plasmid sequences, using the equations above (and thus accouting for 

mappability and for the lacking region in some pMT1). It can be seen that expected coverage 

computed for the reads corresponding to assumed Y. pestis fit very well to the actually 

observed values. The majority of reads not assumed to be Y. pestis have very low read counts 

mapping to the reference sequences, and are seen as a cloud of points in the lower left corners 

of the plots. A few samples can be seen to have a high count of reads mapped to the Y. pestis 

reference chromosome, and therefore also high expected coverage, but much lower actual 

coverage, and are therefore most likely not Y. pestis. Included among these is the sample 

RISE392 (shown as red dots in the plots), which was also deemed not to be Y. pestis based on 

the distribution of edit distances. 

 

Genotyping for phylogenetic analyses 

The calls were generated from alignments versus Y. pseudotuberculosis IP32953 using 

samtools-0.1.18 and bcftools-0.1.17 (Li et al., 2009). The genotype calls were filtered by 

removing heterozygote variants, indels and variants that clustered within 10bp of each other, 

as well as variants within 10 bp of a gap. Additionally genotype calls in modern samples were 

required to have at least 10 high quality base calls (given by DP4) and ancient samples to 

have at least 4 high quality base calls per site. To create full-length consensus sequences for 



each sample the missing sites in the VCF files were then filled with N basecalls and converted 

to fasta. 

 

Heterozygosity estimates 

To estimate if the RISE505 or RISE509 strains represented an infection with two different Y. 

pestis strains we determined the number of heterozygote sites in the genomes of RISE505, 

RISE509, the Black Death strain (Bos et al., 2011) and the strains from Cui et al. (Cui et al., 

2013). The rationale for this is that heterozygote genotype calls for haploid organisms are 

normally caused by mapping errors, but in the case of a mixed infection will be caused by 

divergence between the strains. To allow for comparison between the samples we sampled all 

the bam-files to the same average depth as RISE505 (8.7X) and RISE509 (29.4X) using 

samtools (Li et al., 2009). We excluded the Justinian strain (Wagner et al., 2014) from the 

analysis due to the low average depth across the chromosome (4.3X). Hereafter, we 

genotyped each of the individuals based on the Y. pestis CO92 chromosome and extracted 

heterozygote genotype calls with a depth equal to or larger than 10 (base quality >= 13). We 

removed all transitions, as these are typically patterns of DNA damage, and only kept 

transversions.  

 

Analysis of virulence associated genes 

The 55 genes (Black et al., 2000; Blaylock et al., 2010; Burghout et al., 2004; Bzymek et al., 

2012; Cheng and Schneewind, 2000; Cornelis, 2002; Day and Plano, 2000; Day et al., 2000; 

Diepold et al., 2011; Du et al., 2002; Felek et al., 2010; Fields et al., 1999; Fowler et al., 

2009; Haddix and Straley, 1992; Håkansson et al., 1996; Hinnebusch et al., 1996, 2002; 

Huang and Lindler, 2004; Iriarte and Cornelis, 1999; Juris et al., 2000; Kerschen et al., 2004; 

Li et al., 2014; Lindler et al., 1990; Mukherjee et al., 2006; Payne and Straley, 1998; Perry 

and Fetherston, 1997; Plano et al., 1991; Ramamurthi and Schneewind, 2003; Rosqvist et al., 

1994; Rouvroit et al., 1992; Silva-Herzog et al., 2008; Sodeinde et al., 1992; Stainier et al., 

2000; Williams and Straley, 1998; Woestyn et al., 1994) that we identified as associated with 

virulence of Y. pestis are shown in Figure 5 as well as listed in Table S6. For identification of 

the DFR4 region we used the location of 1,041kb to 1,063kb in the Y. pestis microtus 91001 

genome. The mappability of the DFR4 region was calculated using GEM-mappability library 

(Derrien et al., 2012) with a k-mer of 50 using the entire genome as input. 

 

Genotyping of pde2, pde3 and rcsA involved in survival in flea gut  

We investigated the loss of function mutations in three genes (pde2, pde3 and rcsA) which 

lead to an Y. pestis phenotype that causes blockage of the flea gut and thereby increased 



probability of transmission (Sun et al., 2014). The loss of function mutations for the genes are 

a frameshift mutation (6As -> 7As) in the pde2 gene, a C->T mutation in the promoter and a 

nonsense point mutation in the pde3 gene, and a 30bp internal duplication in the rcsA gene.  

 

For pde2 we used the genotypes of RISE509 that were called using the Y. pseudotuberculosis 

IP32953 genome and we did not find any evidence for an insertion which is in concordance 

with the 6A genotype (position 1,560,134). Likewise when investigating the genotypes based 

on the Y. pestis CO92 genome we find a deletion corresponding to the 6A genotype (position 

1,434,043). For the RISE505 sample the pde2 positions had low coverage (1-2 reads only) 

and we were unable to determine the genotype. 

 

For pde3 we investigated both the promoter mutation (IP32953: C -> T at 3,944,166) and the 

nonsense mutation (IP32953: G -> A at 3,944,534) in RISE509. Although the promoter 

mutation is a C-T mutation and therefore likely to be confounded by DNA damage, we found 

6 non-damaged (not rescaled by MapDamage2) high quality bases confirming the mutation. 

Likewise, the G-A nonsense mutation is also likely to be masked by DNA damage, but we 

identified 62 reads in support of G versus only one read in support of A. Likewise as for pde2, 

the RISE505 sample had low read support but still supported the same genotypes as identified 

in RISE509. 

 

Because rcsA is a 30bp internal duplication we performed de novo assembly of the RISE509 

data using SPAdes as described above. We identified the contig spanning the region and 

performed multiple alignment using ClustalX (Larkin et al., 2007) (Figure S6). The de novo 

assembled contig did not have the internal duplication and RISE509 therefore has the 

ancestral form of rcsA.  

 

Genotyping pla mutations 

We identified a novel non-synonymous C to G mutation in amino acid 31 (amino acid 51 in 

the CO92 reference sequence, position 6,815 on pPCP1) replacing an isoleucine with a valine. 

We found the mutation to be supported by 55 reads in RISE505 (1746-1626 cal BC) and 46 

reads in RISE509 (2815-2677 cal BC), respectively. All other Y. pestis genomes, including 

RISE397 (1048-885 cal BC) carried the derived isoleucine allele (supported by 7 reads). 

 

We additionally investigated the isoleucine 259 to threonine mutation (279 in the CO92 

reference sequence, position 7,500 on pPCP1) (Zimbler et al., 2015). However, because the 

genotype of CO92 at this position is a C and the ancestral state is a T, the genotyping can be 

confounded by ancient DNA damage. For each of the RISE397, RISE505 and RISE509 



samples, the non-damaged bases (not rescaled by MapDamage2) at this site were all 

supporting the ancestral allele (T) with 3, 2 and 2 reads respectively. We additionally called 

genotypes for RISE397, RISE505 and RISE509 based on the Y. pestis microtus 91001 pla 

gene which contains the ancestral T allele. Here the ancestral allele was supported by 11, 19 

and 6 reads, respectively. 

 

Genotyping the flhD gene 

All Y. pestis strains sequenced prior to this study have an insertion of a T in the flhD gene 

(CO92 position: 1,892,659) that is a regulatory gene involved in flagella synthesis (Minnich 

and Rohde, 2007). When investigating RISE505 and RISE509 for this insertion, we found 

them to harbor the ancestral and functional flhD allele supported by 16 and 29 high quality 

bases, respectively. The downstream deleted base (in the CO92 genome) was not supported 

by any high quality reads in any of the two samples.  
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