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Abstract We have analyzed human genetic diversity in

33 Old World populations including 23 populations

obtained through Genographic Project studies. A set of

1,536 SNPs in five X chromosome regions were genotyped

in 1,288 individuals (mostly males). We use a novel

analysis employing subARG network construction with

recombining chromosomal segments. Here, a subARG is

constructed independently for each of five gene-free

regions across the X chromosome, and the results are

aggregated across them. For PCA, MDS and ancestry

inference with STRUCTURE, the subARG is processed to

obtain feature vectors of samples and pairwise distances

between samples. The observed population structure, esti-

mated from the five short X chromosomal segments, sup-

ports genome-wide frequency-based analyses: African

populations show higher genetic diversity, and the general

trend of shared variation is seen across the globe from

Africa through Middle East, Europe, Central Asia, South-

east Asia, and East Asia in broad patterns. The recombi-

national analysis was also compared with established

methods based on SNPs and haplotypes. For haplotypes,

we also employed a fixed-length approach based on

information-content optimization. Our recombinational

analysis suggested a southern migration route out of Africa,

and it also supports a single, rapid human expansion from

Africa to East Asia through South Asia.
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Introduction

The reconstruction of human population history is an

ongoing endeavor that has been made possible, thanks to

the availability of a wealth of data on human genetic

diversity. Such data are generated in two main forms:

complete sequences and allele frequencies of previously

ascertained polymorphisms. Contiguous SNPs contain a

finer degree of information than that represented by inde-

pendent markers. The joint history of haplotypes, including

recombination events that are part of their shared history,

leave footprints in neighboring markers. On average, the

recombination rate among contiguous nucleotides is of the

same order of magnitude as that of the mutation rate per

nucleotide (Kong et al. 2010; Durbin et al. 2010). Thus,

recombination has likely played a major role in shaping the

current haplotype phylogeny.

Methods that can detect recombination events and incor-

porate them into the reconstruction of haplotype phylogenies

are needed. We provided a first step in this direction in our

previous paper, in which we used a model-based algorithm

(IRiS) to detect recombination events in extant haplotypes

(Melé et al. 2010). The IRiS parameters were previously val-

idated in a third-party simulation environment [cosi; (Schaff-

ner et al. 2005)]. The use of a consensus across multiple

parameter sets gave individual recombination events, along

with its extant descendants, with high confidence.

We now extend this protocol to additionally extract the

donor haplotypes contributing to each individual recom-

bination in an effort to reconstruct the ancestral recombi-

nation graph (ARG) from this information. The ARG is

necessarily not fully resolved (hence we call it a subARG)

because not all genetic events can be reconstructed. In this

context, we provided a mathematical description of re-

constructability in Parida et al. (2011) which showed evi-

dence of vanishing reconstructability of the ARG with

depth. Therefore, we used only the top few recombinations

of high confidence, and only reconstructed the high prob-

ability nodes in the ARG. This conservative approach to

subARG construction has sufficient fidelity to the true

ARG under simulation conditions.

Furthermore, since the ARG is being constructed around

recombinations, its resolution relies on the frequency of

recombination events in the underlying region. In this

regard, traces of older recombinations are continuously

being overwritten by newer ones in each successive gen-

eration. This is even truer near hotspots where only the

most recent events can be defined with any certainty.

Conversely, rare recombinations, in cold spots, may bring

together ancient haplotypes that reveal the deeper past

(Fisher 1954; Baird 2006).

Haplotypes are the product of a number of evolutionary

forces, including mutation, selection, drift and

recombination. Their use as the tool of choice in human

population genetics was pioneered by Ken Kidd (Tishkoff

et al. 1996). Since then, multiple studies have taken

advantage of their increased sensitivity to population his-

tory (Tishkoff et al. 1998; Mateu et al. 2001, 2002; Conrad

et al. 2006), which was specifically compared to that of

SNPs (Jakobsson et al. 2008). In that study, it was found

that at the high density considered, unphased SNPs pro-

vided considerable population structure information,

although haplotype data can contribute an additional

informative component for population structure analysis.

Commercial genomewide SNP chips are comprised of

mainly tagSNPs. Each tagSNP represents its neighboring

correlated markers by proxy, and the correlation between

genotyped markers is low. IRiS detects recombination

events by exploiting SNP patterns that define a haplotype.

Thus, the detection of these events improves with higher

correlation among neighboring markers (Melé et al. 2010).

This fact limits the applicability of off-the-shelf genome-

wide assays to detect specific recombination events.

To achieve dense physical coverage, we used a cus-

tomized assay consisting of 1,536 SNPs focusing on five

short regions on the X chromosome; all together the

regions comprise about 2 Mb of sequence. The markers

were chosen to achieve high SNP density, independent of

the underlying linkage disequilibrium structure, for an

unbiased assessment of recombinations. The choice of the

X chromosome has multiple benefits. First, in an ideal

population containing equal number of males and females,

the number of X chromosomes is 3/4 that of any autosome.

Thus, the effective population size of X chromosome is

lower, which, in turn, means that genetic drift has a higher

impact on it (Hammer et al. 2010). Second, the genomic

regions being analyzed in this study recombine only in

females since they lie outside the pseudoautosomal region.

The frequency of recombination events in the phylogeny of

these regions is about a third less per generation than an

autosomal counterpart with comparable recombination

rate. Fewer recent events allow traces of older recombi-

nation to survive longer in the haplotypes, thus allowing a

deeper look into the past. Third, males carry only one X

chromosome. The haplotype of each male chromosome can

therefore be directly determined from the genotype.

Although our detection of recombinations has been shown

to work well in high-quality phased autosomal data (Melé

et al. 2010), by preferentially choosing male samples one

potential source of error is removed.

In this study, 23 worldwide human populations were

sampled by members of the Genographic Consortium and

DNAs provided for this study (Fig. 1). Samples from

an additional ten populations from the HapMap project

(http://hapmap.ncbi.nlm.nih.gov) were also analyzed. In

total, 1,318 chromosomes from 33 populations contributed
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to our study. With these samples, we show the advantages

of analyzing in parallel the subARG, SNPs, and haplo-

types, and add an additional dimension (recombination) to

the usual approaches in human population genetics.

Subjects and methods

DNA samples and data preparation

DNA samples were collected based on geographic distri-

bution from the Old World (Fig. 1, Supplemental Tables 1

and 2). Samples from 23 populations obtained by members

of the Genographic Consortium were provided for recom-

bination-based analysis. Ample information was available

first-hand for the cultural, linguistic, and historical aspects

that could help in interpret the results. Mitochondrial DNA

sequences and haplotype and haplogroups in the Y chro-

mosome have been studied for most of the samples.

Informed consent was obtained from all study subjects,

under approval from ethics committees at all institutions

where investigators collecting samples work. Samples from

an additional six populations included in HapMap phase 3

were obtained from the Coriell Cell Repository. In total,

1,288 samples were genotyped for 1,536 markers. The data

for four HapMap phase 2 populations (release 21) were

downloaded from the project website (http://hapmap.ncbi.

nlm.nih.gov) and added to our analysis.

To reduce the impact of phasing errors, the study

focused on the X chromosome, and male samples were

preferred over those of females. Five regions were

identified on the X chromosome with high SNP density that

were at least 50 Kb away from known genes, copy number

variations and segmental duplications (Supplemental

Table 3). SNPs were selected based on HapMap phase 2

release 24, and genotyping was performed using the Illu-

mina GoldenGate custom Oligos array for 1,536 SNPs. The

average and median distance between SNPs were 1,623

and 804 bp, respectively.

After genotyping, SNPs with more than 15% of missing

data, as well as those having a cluster of heterozygous

positions in male samples (80 SNPs), were removed.

Samples with more than 10% missing markers (123 sam-

ples), or male samples with more than 3 heterozygous

positions, were also removed (14 samples). The remaining

heterozygous markers in male samples were recoded as

missing and imputed. Markers that were monomorphic

across all populations were also removed (201 SNPs). The

final data set resulted in 1,255 SNPs being genotyped in

1,318 samples (from 1,269 males and 49 females)

belonging to 33 worldwide populations (Supplemental

Table 1). None of the 22 internal replicas showed incon-

sistencies. Missing values were imputed using fastPHASE

(Scheet and Stephens 2006) and the female samples were

phased using PHASE 2.1 (Stephens and Scheet 2005),

using the direct data of haplotypes given by males.

Identifying recombinations

Melé et al. (2010) developed a method to identify the

breakpoint position and the extant descendants of the

recombinant carrying the breakpoint junction. A consensus

Fig. 1 Geographic distribution

of the sampled populations in

the Old World
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among sliding windows of varying sizes is used to

accentuate high confidence recombinations. The method

was validated by coalescent simulations under realistic

demographic parameters using cosi (Schaffner et al.

2005).

In the current manuscript, we extend this methodology

by exploiting the haplotypic pattern at the junction.

Neighboring patterns, at each of the two sides of the

inferred breakpoint, carry the donor haplotypes contribut-

ing to the recombination. Agreement across multiple runs

identifies the current sequences which are the descendants

of these donors. Thus, every recombination defines a tri-

chotomy of contributing extant sequences: the direct

descendants of the recombinant which carry both donor

haplotypes, and the two sets of sequences that share

ancestry on only one side (either upstream or downstream)

of the breakpoint. The events creating donor haplotypes are

ancestral to the recombination event itself; their descen-

dants may not be the progeny of the immediate parent of

the recombination (Fig. 2).

Constructing the subARG

Each detected recombination event, in combination with

the donor haplotypes, defines a local network with three to

five nodes in a subset of the samples carrying the neigh-

boring segments around the breakpoint location. If r is the

total number of recombinations detected, then, in the sec-

ond step, we reconcile these r networks to produce a single

consensus network, under a parsimony model, i.e., the

number of newly generated nodes is minimized. The

integrity of the network is maintained by appropriately

assigning segments to the new nodes such that a sample

belongs to exactly one leaf node. Note that the problem of

node minimization has a unique solution, but that the

number of nodes could be very large, and very distant

segments could be joined, which is genetically implausible.

Hence, we parameterize the ARG with a positive integer d,

which controls the extent of refinement (or size) of the

network. We call this a subARG, whose size is a function

of d.

An implementation of the recombination detection

and subARG construction algorithms has been released in

the public domain (https://researcher.ibm.com/researcher/

view_project.php?id=2303) in the software package IRiS

(Javed et al. 2011), which in addition to the executables

also contains a detailed user manual describing the file

formats.

Validation in coalescent simulations

The subARG is validated by coalescent simulations using

the software cosi (Schaffner et al. 2005). A hundred

independent coalescent ARGs are created based on ran-

domly generated recombination profiles representing LD

patterns at different genomic regions of length 200 kbp,

using best fit model parameters as estimated in Schaffner

et al. (2005). Only those with 5,000 nodes or less are

retained for the use in validation. The simulation allows for

the complete genealogy of each extant sequence, along

Fig. 2 A diagram illustrating a

simple example of subARG

construction. a Depicts the

haplotypes at current samples.

Two neighboring

recombinations r1 and r2, are

detected. Let d11 and d12 carry

the detected left and right donor

haplotypes of r1, respectively.

Similarly d21 and d22 carry the

detected left and right donor

haplotypes of r2, respectively.

Note that these nodes may not

be an immediate parent of a

recombinant (see ‘‘Subjects and

methods’’). The local topologies

inferred from the

recombinations are depicted in

(b) and combined to construct a

subARG in (c). The true ARG is

shown in (d) to highlight the

fidelity of the subARG
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with genomic segments borne by each node in the ARG, to

be known.

To validate the topology of a reconstructed subARG, we

compute its fidelity to its corresponding cosi ARG. We

compare both the nodes and the edges of the subARG to

that of the corresponding cosi ARG. To measure the

equivalence of the nodes, we compare the descendant sets

using the Jaccard index (J), which is a single value that

combines precision as well as recall. We create an appro-

priate threshold for J based on its (estimated) null distri-

bution to detect the false positive nodes in the subARG.

The coverage of the subARG is defined as the ratio of the

number of true positive nodes to the total number of nodes

in the cosi ARG.

It should be noted here that multiple nodes in a neigh-

boring topology could yield nearly identical sets of

descendants, rendering them indistinguishable from a re-

constructability perspective. To resolve this multiplicity, as

well as to validate the connectivities, each edge vivj in the

subARG is checked for the existence of a path in the

mapped nodes of vi and vj in the cosi ARG restricted to the

segment borne by vj. If such a path does not exist, then

edge vivj is a false positive; otherwise it is a true positive.

The connectivity measure is the ratio of true positive edges

to the total number of edges in the subARG. On average,

88% of subARG edges map to a path in the corresponding

cosi ARG.

Actually, in a tree, the descendants of a node v are rather

straightforward to compute: chromosome sample u is a

descendant of node v if there exists a path from v to u, in

the genealogical tree. However, in an ARG, a path is valid

only if all of the edges in the path belong to at least one

marginal tree in the ARG. In the evaluation process, we

maintain the integrity of the paths by tracking only the

segments carried by the subARG nodes as we traverse

edges of the true ARG. To quantify the coverage of the cosi

ARG, the focus is placed only on the internal nodes. Fig-

ure 3b shows the coverage achieved among non-leaf nodes

in each simulation.

To summarize, we validate the subARG topology

along three mutually independent directions. These

include: (a) the precision and recall of every true positive

node in the subARG; (b) the node coverage of the cosi

ARG defined as the ratio of the number of true positive

nodes of the subARG to the total number of nodes in the

cosi ARG; and (c) the connectivity ratio of the subARG

with respect to the cosi ARG. In isolation, each of the

three measures could be substantially improved at the cost

of the other two through trivial changes to the recon-

structed subARG. However, the three measures together

approximate fairly the fidelity of the subARG to the true

ARG.

Estimating the age of the subARG nodes

The age of an allele correlates with its frequency in extant

samples (Watterson and Guess 1977). In the subARG, an

estimate of the age of a node can be used to compute the

distance between two chromosomes as the age of their last

common ancestor (LCA) node in the subARG. We applied

the expected age of the node (in units of Ne generations)

based on the estimate in Kimura and Ohta (1969):

EðageÞ ¼ �2p

1� p
lnðpÞ

where p is the relative frequency of the extant descendants

of a node. The performance of the estimate is evaluated via

coalescent simulations where the true age of each node is

known. The difference between the true age and the esti-

mated age was computed for each node during topology

validation and is depicted in Fig. 3c, d.

The genetic distance between a pair of individuals can

be defined in terms of the depth of their LCA. However, in

an ARG, due to recombinations, the neighboring segment

may not be co-inherited from the same ancestor; hence,

there exist multiple possible LCAs. Furthermore, to ensure

that the LCA carries common ancestral material of the two

nodes, the LCA and the two nodes must all lie on at least

one of the marginal trees of the recombining segment.

Therefore, we average the age of all the LCAs across all

the non-recombining segments. Since the subARG is not

completely resolved, depending on the extant samples and

the confidence in the reconstructed recombinations, the

relationship between every pair of samples may not be

defined at each segment; such segments do not contribute

to the average.

A new haplotype definition

Defining haplotype length in population genetic studies is

not straightforward. Longer haplotypes retain larger

diversity and provide higher differentiation among sam-

ples, to the extreme case in which each individual is

different. The other extreme is a purely uncorrelated SNP-

based analysis where the information about neighboring

markers is omitted. We define a measure of informativity

for haplotypes that incorporates both the number of dif-

ferent haplotypes and their average frequencies:

IL ¼
1

ncol

Xncol

i¼1

hi

Xncol

i¼1

N

hi

where ncol is the number of columns obtained when dividing

each sequence into windows of L SNPs, hi is the number of

different haplotypes found in each column i, and N is the

number of sequences. Informativity was calculated for
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lengths 5, 10, 20, 30, 40, 60, 80, 100, and 120 SNPs. For each

length L, five different informativity values were calculated

by changing the starting position of the first window from

position 1 and increasing it in L/5 steps; all five values were

subsequently averaged. The highest average informativity

value laid between lengths 30 and 40 SNPs and, thus, we

performed the same calculation for lengths 30, 32, 34, 36, 38

and 40 taking as starting positions all even positions (Sup-

plemental Figure 3). The haplotype length having the high-

est average informativity was 38 SNPs, and this was the

length used in all subsequent analyses.

Genetic diversity analysis

We applied dimensionality reduction methods and a

Bayesian population structure algorithm to our data set in

four different ways, based on SNPs, the subARG, haplotypes

defined as in Jakobsson et al. (2008), and fixed-length hap-

lotypes (see above). Jakobsson et al. (2008) define 20 unique

haplotype clusters at each marker. For every individual at

each SNP, the probability of assignment to each of the 20

clusters is estimated using fastPHASE (Scheet and Stephens

2006). Eigensoft (Patterson et al. 2006) was used to apply

PCA to SNP and haplotype data, with the LD correction

parameter. Since Eigensoft requires biallelic data, every

multiallele haplotype column was split into multiple biallelic

columns, as suggested in Patterson et al. (2006). To compute

the PCA for the subARG data, the graph relations need to be

encoded as a matrix. This matrix is constructed by repre-

senting each non-leaf node as a column with the corre-

sponding sample values indicating the progeny of this node;

i.e., matrix entry (i, j) is 1 if the sample i is descendant of the

Fig. 3 Each data point in

subplot a represents the

precision and recall among

descendant sets across all the

subARG nodes in a coalescent

simulation. Each data point in

the scatter plot b represents the

percentage of internal true ARG

nodes recovered in the subARG.

c, d represent the performance

of the age estimate. One

hundred coalescent simulations

were conducted using cosi and

ARGs of 5,000 nodes or less

were retained. The true age of a

subARG node is the age of the

node to which it maps in the

true ARG. c the plot of the true

age versus the estimate. Each

point in the scatter plot

represents a node in the

simulations. The line represents

perfect prediction. d Plots the

histogram of prediction error. It

is defined as the difference

between true node age and the

estimate
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node j; otherwise it is 0. The distance between pairs of

individuals from different populations were averaged (allele

and haplotype sharing percentages were used for allele and

haplotype data, respectively) and represented with multi-

dimensional scaling (MDS) using Matlab.

Bayesian clustering was performed using Structure

(Falush et al. 2003; Pritchard et al. 2000). A subset of

uncorrelated tagging SNPs was selected using Haploview

(Barrett et al. 2005) for SNP-based analysis. For fixed-

length haplotypes, we applied Bayesian clustering on five

different data sets with varying starting positions. Jakobs-

son et al. (2008) defined haplotypes by a probabilistic

cluster assignment across 20 clusters for each sample at

every marker. The probability matrix was sampled to cre-

ate 10 different data sets. The subARG-based matrix, as

encoded for PCA, was also analyzed by this method. For

each methodology and number of clusters, CLUMPP

(Jakobsson and Rosenberg 2007) was used to reconcile

multiple replicates in a manner similar to Wang et al. (2007)

and the results were displayed using distruct (Rosenberg

et al. 2002). All runs had a burn-in period of 50,000 iterations

followed by 50,000 iterations of sampling; the admixture

model (with K = 2 to K = 4) was used.

Correlations with geography and language

We adopted the language classification compiled by the

Ethnologue (http://www.ethnologue.org) (Supplemental

Table 4). Recently migrated (European Americans) or

admixed (African Americans, Mexicans) populations were

not considered. Furthermore, languages that do not share a

relative do not contribute to the comparative analysis and,

hence, were not considered (Basque, Chechen, Ati, Lao,

Japanese). Linguistic distances were estimated according to

the method defined by Excoffier et al. (1991). Populations

belonging to different linguistic families are assigned a

distance of 4. Within the same family, populations having

distinct language stock or group were assigned distances 3

or 2, respectively. Different languages within the same

group were assigned a distance of 1. Parayar and Cape

Nadar both speak Tamil and were therefore assigned a

distance of 0. In addition, pairwise great circle distance was

computed between these populations using Cairo Egypt

(30N, 31E) and Istanbul Turkey (41N, 28E) as waypoints

to Asia and Europe, respectively.

Results

We have analyzed a final data set consisting of the

genotypes of 1,255 SNPs in five regions of the X

chromosome in 1,318 (mostly male) samples belonging

to 33 human populations; genotype data are available at

(https://researcher.ibm.com/researcher/view_project.php?

id=2303) We have devised a new method to analyze SNP

data based on reconstructing a subARG, which has been

validated before applying it to the current data set.

subARG validation

We validated the subARG construction method by means

of coalescent simulations with a standard human demog-

raphy (Schaffner et al. 2005). Figure 3a shows a scatter

plot of the precision and recall achieved, in the descendant

sets, for each simulation. Overall, across all of the ARGs,

the descendant sets exhibited 92% precision and 81%

recall. The average precision and recall values were vir-

tually identical for both the nodes generated in recombi-

nation detection, and those subsequently computed in the

subARG. On average, 17% of the non-leaf true ARG nodes

were recovered in each subARG. In this regard, a true node

in the subARG may not be called as such if a false positive

node exists downstream of it. That is, the recall may be

underestimated for deeper nodes, resulting in a globally

conservative recall statistic.

Figure 3c and d depicts the performance of the age

estimate; the relationship with allele frequency is shown in

Supplemental Figure 1. The true age of a subARG node is

the age of the node to which it maps in the true ARG. In

general, the average estimate tends to be higher to com-

pensate for the long tail of the age distribution. The actual

age distribution of the nodes recovered from cosi simula-

tions can be seen in Supplemental Figure 2.

Genetic diversity

The average distance between populations based on four

types of analysis (subARG, SNPs, probabilistic haplotypes,

fixed-length haplotypes) is represented by means of MDS

in Fig. 4. All four types of analysis gave similar results,

with Sub-saharan African populations being clearly sep-

arated from the other populations. The remaining popu-

lations were sorted in a gradient from Europe through

South Asia to East Asia. North African populations were

consistently slightly closer to Sub-saharan Africans,

whereas the Spanish Gypsies showed affinities with South

Asians. The northeast Indian Adi clustered with East

Asian populations, as did the isolated Philippine Negrito

Ati. The third MDS dimension separated Indian popula-

tions from the remaining groups, although only in the

subARG analysis.

When expanded to consider inter-individual distances

and plotted by means of PCA (Fig. 5), some small differ-

ences emerged among the four methods. A clearer pattern

of population relationships was observed in the subARG-

based plot, with a tighter clustering of Sub-saharan
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Fig. 4 MDS plots of pairwise

population distances estimated

from the a subARG, b allele

sharing at SNPs, c probabilistic

haplotypes (Jakobsson et al.

2008), and d fixed-length

haplotypes. Population

abbreviations are provided in

Supplemental Table 1

Fig. 5 Principal component

analysis computed from

a subARG, b SNPs,

c haplotypes defined as in

Jakobsson et al. (2008), and

d fixed-length haplotype-based

matrices

608 Hum Genet (2012) 131:601–613
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individuals and a clearer boundary between Sub-saharan

individuals and others. By contrast, the boundaries within

Eurasia were clearer in the fixed-length haplotype plot. It is

notable that PCA plots (particularly the subARG-based

one) represent the pattern resembling the geographical map

of the Old World, where African, European and East Asian

populations find their place according to their actual geo-

graphic position (similar results were obtained (Novembre

et al. 2008) for the genetic variation within Europe).

The Bayesian clustering algorithm implemented in

STRUCTURE produced similar results for the subARG,

SNPs, and probabilistic haplotypes (Fig. 6). At K = 3, a

fuzzy classification of individuals into Sub-saharan African,

European, and East Asian components emerged; at K = 4,

the European component appeared to be randomly split into

two. However, for fixed-length haplotypes (Fig. 6), most

individuals were largely assigned to a single component,

and, at K = 4, the new component clearly mapped to South

Asia. In Sub-saharan Africa, the European component

appeared in some Maasai and African-American individu-

als; conversely, some Egyptians and Moroccans contained

Sub-saharan African haplotypes. The South Asian compo-

nent was quite apparent in Spanish Gypsies, and reached its

highest frequencies in South Indians (Cape Nadar and

Parayar); the European component was frequent in the

northwest Indian Gujarati, while the East Asian component

appeared in the northeast Indian Kalita.

The degree of concordance in the subARG population

distances and SNP and haplotype-based measures was

quantified using Mantel tests. The pairwise population dis-

tances in the subARG correlated with SNPs (r = 0.44),

haplotypes based on Jakobsson et al.’s definition (r = 0.40),

and haplotypes based on fixed window size (r = 0.25), each

with p \ 10-6. To estimate the apportionment of genetic

diversity within and across continental groups and popula-

tions, an AMOVA was performed using Arlequin (Excoffier

and Lischer 2010). The results indicate that 88–94% of the

variance observed is found within populations. The highest

discrimination between continental groups was reached with

SNPs (9.4%), followed by the subARG (7.24%), probabi-

listic haplotypes (5.13%), and fixed-length haplotypes

(4.62%). The correlation between genetic, linguistic, and

geographic distances is shown in Table 1. The results indi-

cated that geography has played a more important role than

linguistics in shaping the genetic differentiation of the study

populations (Belle and Barbujani 2007).

Discussion

Recombination, SNPs and haplotypes

The combination of SNPs into haplotypes adds a new

dimension to studies of genetic diversity. Besides mutation,

Fig. 6 STRUCTURE plots

based on the subARG, SNPs,

probabilistic haplotypes

(haplotypes P) defined as in

Jakobsson et al. (2008), and

fixed-length haplotypes

(haplotypes F). In each case,

plots with K = 2 through K = 4

are shown
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recombination has to be reckoned with as a diversity-

generating process. For the first time, we have attempted to

reconstruct the phylogenetic structure driven by recombi-

nation using the ARG. A complete reconstruction is

demonstrably unfeasible, but we have shown that we can

provide a subARG with great precision and recall. The

subARG provides a new genetic analysis tool which, as we

will discuss below, complements existing methods. It is

easily scalable to much larger genomic regions than those

we analyzed here, and, although it is not suitable for tag

SNP-based whole genome arrays, it is perfectly applicable

to whole genome resequencing data, where variation is

presented regardless of the underlying LD structure, that is,

independently of the past recombinational history.

We have explicitly incorporated recombination into our

genetic analysis, and have performed a parallel study based

on SNPs, the subARG, and haplotypes. The latter naturally

combine the effects of mutation, recombination, and

demography, but their definition is problematic. The

diversity observed in a haplotype depends on the number of

SNPs conjoined to form it. If the window size is too small,

then the correlation between neighboring loci is lost, and

the results revert to those of SNP-based methods; con-

versely, too large of a window makes each individual

unique, and frequency- and sharing-based methods become

meaningless. Jakobsson et al. (2008) provided a solution to

this conundrum by probabilistically assigning each SNP in

each individual to one of 20 haplotype clusters. In the

present paper, we apply their method, but also suggest an

alternative heuristic in which haplotype length is fixed but

optimized for information content, by balancing haplotype

numbers and frequencies.

These methods appear complementary to each other.

While fixed-length haplotypes provided much clearer

individual assignments in STRUCTURE and were the only

method to yield a South Asian component, the subARG

defined better the separation of Sub-saharan African indi-

viduals in the PCA. The latter result may be a consequence

of the fact that fixed-length haplotypes had to be optimized

for the global sample. Given the lower LD in Sub-saharan

Africa, the fixed length that we used was probably too large

for that continental region. Analyses that are biased by

frequency range will tend to work better with biallelic

rather than with multiallelic markers, given than the former

are less constrained in their frequencies that the latter. This

may explain why SNPs showed larger fractions of the

genetic diversity attributed to differences between conti-

nental groups.

Old World genetic diversity

This study has been performed with a large number of

populations from the Old World, and represents one of the

largest surveys of human genetic variation. Although our

data set overlap in geographic coverage with other sets

such as HGDP, it contains particular features such as the

representation of India as well as singular populations such

as Gypsies and the Ati, among others.

When analyzing the apportionment of variation to popu-

lations and continents, the explicit analysis of recombination

in the subARG or its implicit representation in the haplotypes

showed that the amount of variation found within popula-

tions is larger than that found by SNPs, and, conversely, the

variation explained by differences between continental

groups is smaller. This result is expected if the recombination

events captured are more recent than the mutational events

creating the SNPs. Such a finding could be due to the pali-

mpsestic nature of recombination and to the biases implicit in

its detection. In general, the results given by recombination

are expected to be related to more recent historical events

(Melé et al. 2010); the combination of mutation and

recombination that is provided by haplotypes may thus

capture a wider timeframe of population history.

Independently of the framework used to analyze the

data, the genetic structure of the populations correlated

with geographic distance, while linguistic classification

failed to account for genetic differentiation once the effect

of geography was removed. Even though the recombina-

tion events detected tend to be recent, most of them may be

ancient enough to go beyond the inception of the major

linguistic branches, and, thus, may not adequately reflect

fast linguistic changes.

Our results are consistent with the out of Africa hypoth-

esis, as African populations are the most differentiated and

Table 1 Correlation between genetic, linguistic and geographic population distances

Genetic distance measure Linguistic

correlation

Geographic

correlation

Linguistic correlation

(after correction)

Geographic correlation

(after correction)

r p r p r p r p

SNPs 0.32 \10-3 0.63 \10-3 0.24 \10-3 0.60 \10-3

Probabilistic haplotypes 0.32 \10-3 0.56 \10-3 0.23 \10-3 0.54 \10-3

Fixed-length haplotypes 0.30 \10-3 0.50 \10-3 0.22 \10-3 0.46 \10-3

subARG 0.26 0.002 0.55 \10-3 0.16 0.011 0.52 \10-3
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most internally diverse from compared to other populations

in both analyses. Within Africa, both the Maasai and the

African-Americans seem to have some West Eurasian or

Middle Eastern component, as seen with all the types of

analyses employed in this study. In genomewide studies, the

Maasai exhibit an East-African specific component (Tishk-

off et al. 2009; Henn et al. 2011). In African-Americans, this

finding could be explained by their known recent admixture,

which may be slightly underestimated by the X chromosome.

A male-mediated European admixture would result in a 1:2

ratio of European to African X chromosomes being trans-

mitted. The West Eurasian component in the Maasai can be

explained by them being the descendants of populations

ancestral to non-Africans and/or gene flow from non-Afri-

cans into Africa. In addition, some Middle Eastern and North

African populations, such as the Moroccan, Egyptian, and

Kuwaiti populations, show discernable traces of African

admixture in the STRUCTURE plots, with all methods of

analysis employed (subARG/SNPs/haplotypes).

In Europe, the most outstanding result is the clear

demonstration of the Indian origin and West Eurasian

admixture of Gypsies, which had been shown before using

unilinearly transmitted markers [(Mendizabal et al. 2011)

and references therein]. This could most clearly be seen

with the STRUCTURE plots of fixed-length haplotypes. In

the Central Asian continuum of genetic variation, the

Tatars showed the smallest East Asian contribution, which

was higher in the more easterly located Uighur and

Altaians.

In the Bayesian clustering analysis, a component that

mostly occurred in Indian populations was revealed only

when optimal fixed-length haplotypes were used. Our data

set contained two populations from southern India, where

this component reached its highest frequencies. Thus, it is

possible that this component captures a predominantly

south Indian dimension of genetic variation. These high

frequencies would explain why this component appears

somewhat diluted in the northwest Indian, Indo-European

speaking Gujarati, as well as in the northeastern Indian

Kalita, which shows West and East Eurasian genetic con-

tributions, respectively. The fact that the Indian component

appears in the Lao of SE Asia and in the Ati Negritos of the

Philippines may imply that this component may have

captured some of the contribution of the southern route out

of Africa. Nevertheless, the Ati were clearly linked to East

Asian populations, as was shown with unilinear markers

(Delfin et al. 2011; Gunnarsdottir et al. 2011). This lack of

distinctiveness has strong implications for the peopling of

Asia. Traditionally (Cavalli-Sforza et al. 1994), Negritos

(together with Melanesians and Australian Aborigines)

were regarded as populations directly descending from a

first wave of anatomically modern humans that emigrated

out of Africa, while other Asians were thought to derive

from a more recent migration. Our results support a single

migration wave out of Africa into Asia, and a maturation

phase in South Asia (Dennell and Roebroeks 2005;

Macaulay et al. 2005) prior to expansion into regions to the

east.

The admixed nature of the Mexican population was also

revealed. The lack of Native American reference samples

could explain why the majority component was East Asian;

sex-biased gene flow may have led to an overestimate of

this component. The diversity in individual histories, with

varying degrees of Native American versus European

ancestry, is apparent in both the Bayesian cluster results

(which also reveal, in some individuals, an African con-

tribution) and the wide area occupied by Mexicans in the

PCA graph (Fig. 5).

This study has demonstrated that a combination of

methods, including a recombination-based approach, allow

the extraction of a large amount of genetic information

from genomic data. Having analyzed only 0.075% of the

genome, we have been able to recover many of the patterns

seen with much larger data sets using different sets of

unilineal and autosomal markers.
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