Как распределены древние аллели в геномах смешанных популяций

Впервые исследовано генетическое наследие древних людей – неандертальцев и денисовцев – в смешанных популяциях Центральной и Южной Америки. Оказалось, что количество древних аллелей в геномах этих популяций тем выше, чем выше доля америндского компонента в геноме. Отрицательная корреляция отмечается с долей африканского компонента. В сегментах генома америндского происхождения количество денисовских аллелей несколько выше, чем в сегментах европейского происхождения, что согласуется с популяционной историей коренного населения Америки. Найдены также кандидатные гены с архаичными аллелями, которые, вероятно, служили мишенями для отбора в американских популяциях.

В геномах современных людей сохранились аллели, полученные ими при метисации наших предков с древними видами *Ното* – неандертальцами и денисовцами. По последним данным, у людей неафриканского происхождения неандертальские аллели составляют 1-4% генома, а больше всего денисовских аллелей несут жители Океании (до 5%), за ними следуют популяции Южной и Восточной Азии. Но до сих пор долю архаичных последовательностей в современных геномах оценивали в несмешанных популяциях (которые не прошли через относительно недавние события смешения). Кроме того, эти исследования ограничивались Евразией.

Авторы <u>статьи в журнале Genome Biology and Evolution</u> впервые изучили распределение древних аллелей в геномах современных людей в смешанных популяциях Америки. Геномные данные они взяли из базы 1000 Genomes Project.

Сначала подсчитали неандертальские и денисовские аллели в несмешанных региональных популяциях: Восточной Азии, Южной Азии и Европы. Больше всего древних включений в геном оказалось в Восточной Азии, затем в Южной Азии и меньше всего в Европе. Таким образом, были подтверждены полученные ранее данные.

Смешанные популяции представляли колумбийцы, мексиканцы, перуанцы и пуэрториканцы. В их геномах в разных пропорциях представлены америндские (индейские), европейские и африканские компоненты. Прежде всего, оказалось, что они очень разнообразны по доле архаичных аллелей, индивидуальное разнообразие в них гораздо выше, чем в несмешанных популяциях.

Если сравнить эти популяции между собой, то меньше всего архаичных аллелей насчитывается у пуэрториканцев, затем, по возрастанию, следуют колумбийцы, мексиканцы и перуанцы. Это соответствует доле америндского (индейского) компонента в геномах этих популяций: больше всего у перуанцев (около 75%), меньше всего у пуэрториканцев (около 14%). Число аллелей, заимствованных у неандертальцев и денисовцев, находилось в положительной корреляции с долей америндского компонента в геноме и в отрицательной корреляции – с долей африканского компонента. Последнее очевидно, так как предки африканцев не скрещивались с древними людьми. Корреляция архаичных аллелей с долей европейского компонента оказалась положительной у пуэрториканцев и колумбийцев (с низким америндским компонентом) и отрицательной – у перуанцев и мексиканцев (с высоким америндским компонентом).

Авторы также проследили распределение древних аллелей в разных участках генома в зависимости от происхождения этого участка. Как и ожидалось, участки генома африканского происхождения имели наименьшую плотность архаичных аллелей, а участки америндского происхождения — наибольшую. Неандертальские аллели имели в среднем в пять раз более высокую плотность, чем денисовские. Денисовские аллели более часто находились в участках генома америндского происхождения, чем европейского, и это хорошо согласуется с популяционной историей коренного населения Америки. Такие же закономерности наблюдались в распределение архаичных последовательностей определенной длины.

Наконец, специалисты проанализировали, в каких участках генома заимствованные древние аллели могли поддерживаться отбором для адаптации к окружающей среде в Америке. Эти аллели в смешанных американских популяциях должны иметь более высокую частоту, чем в родственных популяциях на других континентах. В анализ взяли популяции перуанцев и мексиканцев как имеющие наибольший америндский компонент в геноме. Для сравнения нужно было взять коренные популяции Сибири, так как коренное население Америки происходит от миграции из Сибири, но поскольку не было в наличии достаточно геномов из Сибири, в качестве популяций сравнения использовали восточноазиатские.

Участки генома, в которых древние аллели имели более высокую частоту в американских популяциях, чем в популяциях Восточной Азии, включали некоторые гены, которые, предположительно, служили мишенями отбора. Это гены IFIH1/FAP и WARS2, а также LRRK2/MUC19, для которых и раньше предполагали адаптивную роль. Кроме того, ген FARP2, участвующий в формировании цитоскелета, ген PAX3 (транскрипционный фактор, важный для развития), ген CNTNAP2, вовлеченный в работу рецепторов в ЦНС, и ген MYOCD, влияющий на развитие сердца. Впрочем, авторы допускают и такой сценарий, что, на самом деле, эти аллели эволюционно нейтральны, и их высокая частота в американских популяциях есть результат демографических событий, таких как проход через бутылочное горлышко.

Таким образом, исследование заимствованных из древних геномов аллелей в смешанных популяциях показывает, как
недавние события смешения повлияли на распределение этих аллелей. Ученые предполагают, что геномы коренного
американского населения периода до европейской колонизации должны содержать больше архаичных аллелей, чем геномы
смешанных популяций. Было бы интересно в будущем изучить такие геномы из древних образцов.

текст Надежды Маркиной

TA	cт	^	 	**	,

Kelsey E. Witt et al. The Impact of Modern Admixture on Archaic Human Ancestry in Human Populations // *Genome Biology and Evolution*, Volume 15, Issue 5, May 2023 https://doi.org/10.1093/gbe/evad066